Data Intensive Linguistics — Lecture 9 Parsing (I): Context-free grammars and chart parsing

Philipp Koehn

6 February 2006

The path so far

- Originally, we treated language as a *sequence of words*
 - → n-gram language models
- Then, we introduced the notion of *syntactic properties of words*
 - → part-of-speech tags
- Now, we look at syntactic relations between words
 - \rightarrow syntax trees

A simple sentence

I like the interesting lecture

Philipp Koehn DIL Lecture 9 6 February 2006

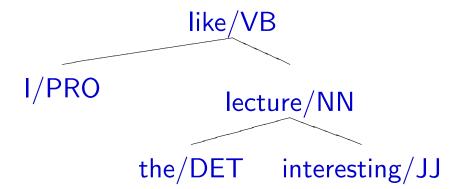
Part-of-speech tags

I like the interesting lecture PRO VB DET JJ NN

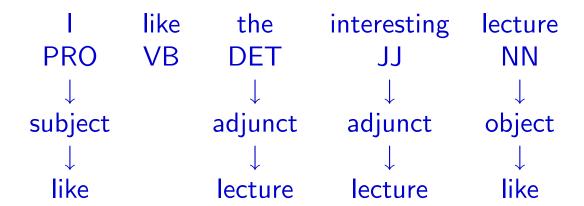
Philipp Koehn DIL Lecture 9 6 February 2006

Syntactic relations

I like the interesting lecture PRO VB DET JJ NN

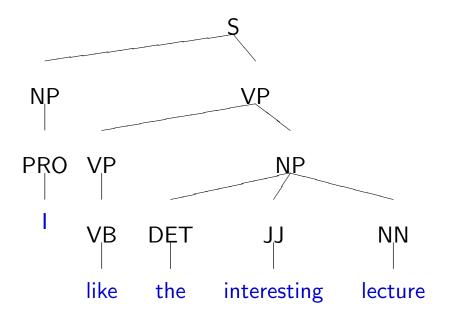

- The adjective *interesting* gives more information about the noun *lecture*
- The determiner *the* says something about the noun *lecture*
- The noun *lecture* is the object of the verb *like*, specifying *what* is being liked
- The pronoun *I* is the subject of the verb *like*, specifying *who* is doing the liking

Dependency structure


This can also be visualized as a **dependency tree**:

Dependency structure (2)

The dependencies may also be labeled with the type of dependency



Philipp Koehn DIL Lecture 9 6 February 2006

Phrase-structure tree

A popular grammar formalism is **phrase structure grammar**Internal nodes combine leaf nodes into phrases, such as *noun phrases (NP)*

Philipp Koehn DIL Lecture 9 6 February 2006

Building phrase-structure trees

- Our task for this week: parsing
 - given: an input sentence with part-of-speech tags
 - wanted: the right syntax tree for it
- Formalism: context-free grammars
 - non-terminal nodes such as NP, S appear inside the tree
 - terminal nodes such as like, lecture appear at the leafs of the tree
 - rules such as NP → DET JJ NN

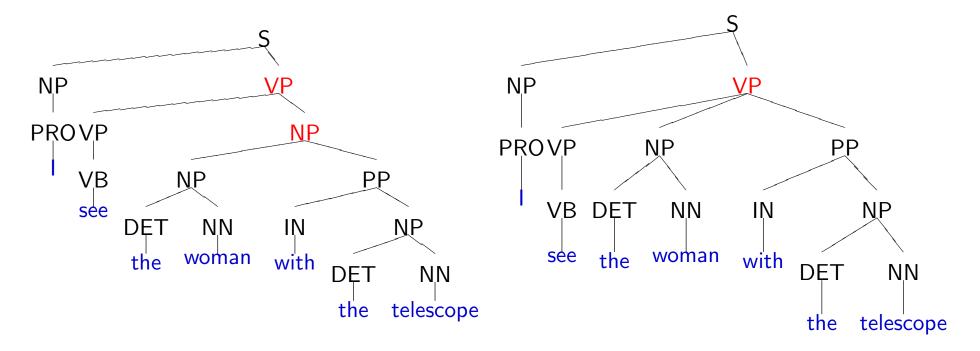
Applying the rules

Input	Rule	Output
S	$S \to NP \; VP$	NP VP
NP VP	$NP \to PRO$	PRO VP
PRO VP	PRO → /	/ VP
/ VP	$VP \to VP \; NP$	/ VP NP
/ VP NP	$VP \to VB$	/ VB
/ VB NP	VB → <i>like</i>	I like NP
I like NP	$NP \to DET JJ NN$	<i>I like</i> DET JJ NN
I like DET JJ NN	$DET o \mathit{the}$	I like the JJ NN
I like the JJ NN	JJ → interesting	I like the interesting NN
I like the interesting NN	$NN o \mathit{lecture}$	I like the interesting lecture

Philipp Koehn DIL Lecture 9 6 February 2006

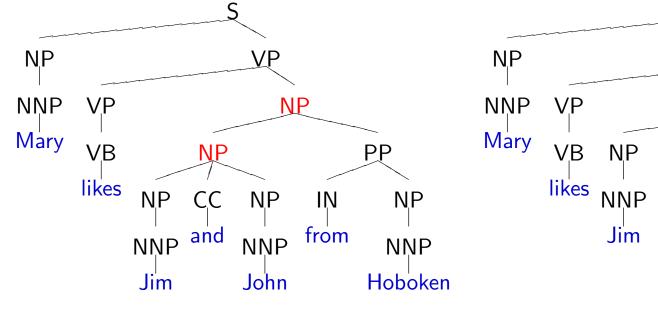
Recursion

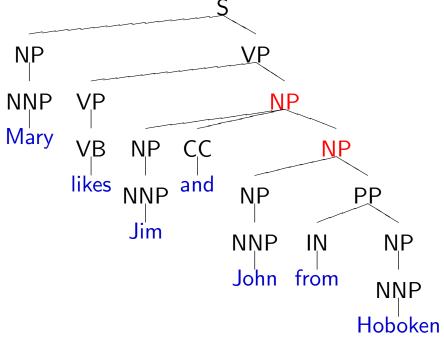
Rules can be applied **recursively**, for example the rule $VP \rightarrow NP \ VP$


Context-free grammars in context

- Chomsky hierarchy of formal languages (terminals in caps, non-terminal lowercase)
 - **regular**: only rules of the form $A \to a, A \to B, A \to Ba$ (or $A \to aB$) Cannot generate languages such as a^nb^n
 - context-free: left-hand side of rule has to be single non-terminal, anything goes on right hand-side. Cannot generate $a^nb^nc^n$
 - context-sensitive: rules can be restricted to a particular context, e.g. $\alpha A\beta \rightarrow \alpha aBc\beta$, where α and β are strings of terminal and non-terminals
- Moving up the hierarchy, languages are more expressive and parsing becomes computationally more expensive
- Is natural language context-free?

Why is parsing hard?

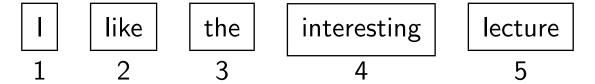

Prepositional phrase attachment: Who has the telescope?



Why is parsing hard?

Scope: Is *Jim* also from *Hoboken*?

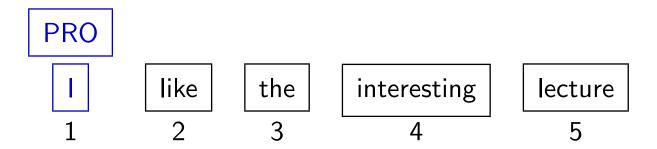
CYK Parsing


- We have input sentence:
 I like the interesting lecture
- We have a set of context-free rules: $S \rightarrow NP \ VP, \ NP \rightarrow PRO, \ PRO \rightarrow \textit{I}, \ VP \rightarrow VP \ NP, \ VP \rightarrow VB, \ VB \rightarrow \textit{like},$

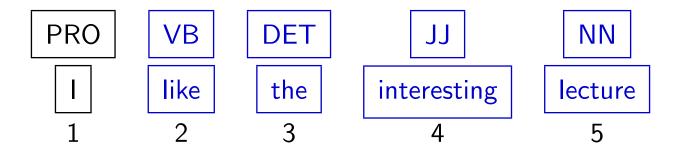
 $NP \rightarrow DET JJ NN, DET \rightarrow the, JJ \rightarrow, NN \rightarrow lecture$

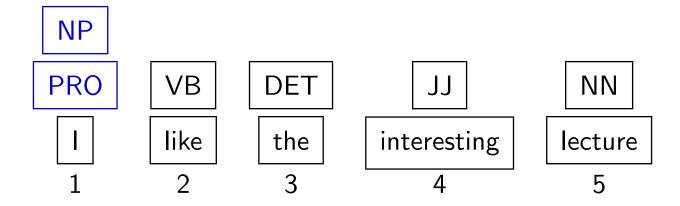
- Cocke-Younger-Kasami (CYK) parsing
 - a bottom-up parsing algorithm
 - uses a chart to store intermediate result

Example

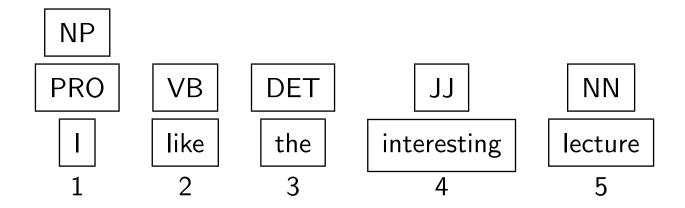

Initialize chart with the words

Example (2)


Apply first terminal rule $PRO \rightarrow I$

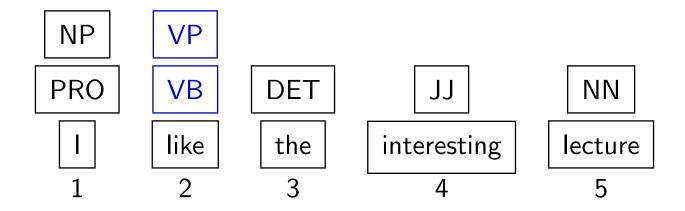

Example (3)

... and so on ...

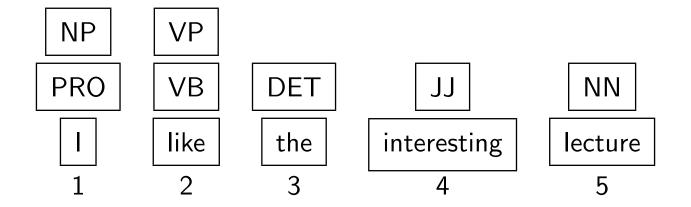

Example (4)

Try to apply a non-terminal rule to the first word The only matching rule is $NP \rightarrow PRO$

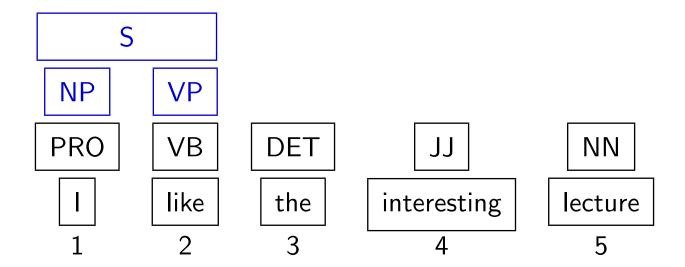
Example (5)


Recurse: try to apply a non-terminal rule to the first word No rule matches

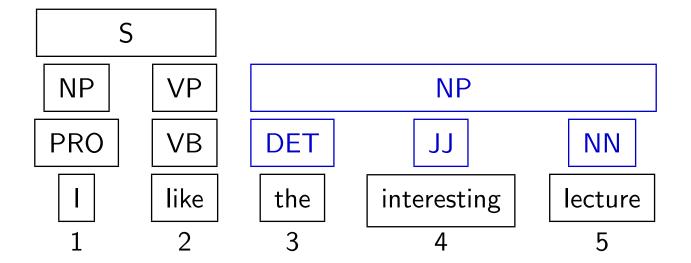
Example (6)


Try to apply a non-terminal rule to the second word The only matching rule is $VP \rightarrow VB$ No recursion possible, no additional rules match

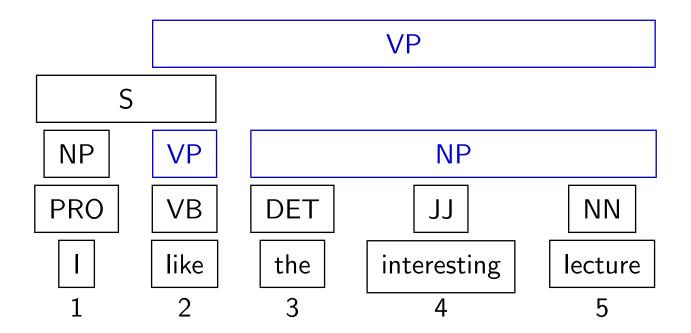
Example (7)


Try to apply a non-terminal rule to the third word No rule matches

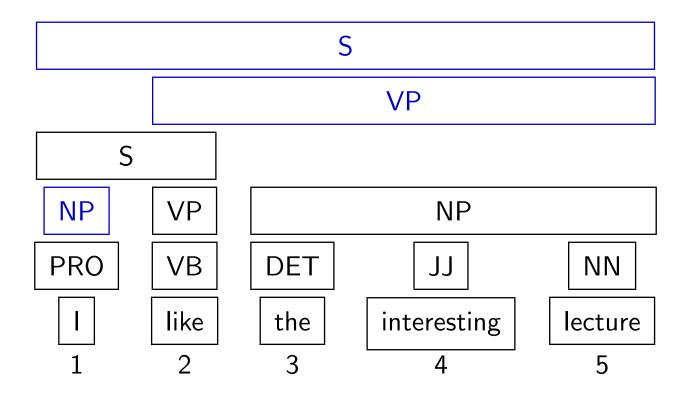
Example (8)


Try to apply a non-terminal rule to the first two words. The only matching rule is $S \rightarrow NP VP$. No other rules match for spans of two words

Example (9)


One rule matches for a span of three words: NP \rightarrow DET JJ NN

Example (10)


One rule matches for a span of four words: $VP \rightarrow VP NP$

Example (11)

One rule matches for a span of five words: $S \rightarrow NP VP$

CYK algorithm for binarized grammars

```
- for all words w_i: // terminal rules
  - for all rules A \to w_i: add new chart entry A at span [i,i]
- for length = 1 to sentence length n // non-terminal rules
  - for start = 1 to n - (length - 1)
    end = start + length - 1
    - for middle = start to end - 1: // binary rules
       for all non-terminals X in [start, middle]:
      for all non-terminals Y in [middle + 1, end]:
      for all rules A \to X Y.
       add new chart entry A at position [start, end]
    - for all non-terminals X in [start, end]: // unary rules
       for all rules A \to X:
       add new chart entry A at position [start, end]
```