Data Intensive Linguistics — Lecture 6
Tagging (II): Transformation-Based Learning and Maximum Entropy Models

Philipp Koehn
26 January 2006

Tagging as supervised learning
- Tagging is a supervised learning problem
 - given: some annotated data (words annotated with POS tags)
 - build model (based on features, i.e. representation of example)
 - predict unseen dt (POS tags for words)
- Issues in supervised learning
 - there is no data like more data
 - feature engineering: how best represent the data
 - overfitting to the training data?
- There are many algorithms for supervised learning (Naive Bayes, decision trees, maximum entropy, neural networks, support vector machines, ...)

One tagging method: Hidden Markov Models
- HMMs make use of two conditional probability distributions
 - tag sequence model $p(t_0|f_{-1}, f_{-2})$
 - tag word prediction model $p(w_t|f_t)$
- Given these models, we can find the best sequence of tags for a sentence using the Viterbi algorithm

How good is HMM tagging?
- Labeling a sequence is very fast
- Viterbi algorithm outputs best label sequence (previous tags affect labeling of next tag), not just best tag for each word in isolation
- It is easy to get 2nd best sequence, 3rd best sequence, etc.
- But uses only a very small window around word (n previous tags)

More features
- Consider a larger window

 \[
 \begin{array}{cccccccc}
 W_{-4} & W_{-3} & W_{-2} & W_{-1} & W_0 & W_{+1} & W_{+2} & W_{+3} & W_{+4} \\
 t_{-4} & t_{-3} & t_{-2} & t_{-1} & t_0 & t_{+1} & t_{+2} & t_{+3} & t_{+4} \\
 \end{array}
 \]
- Examples for useful features
 - if one of the previous tags is MD, then VB is likelier than VBP (basic verb form instead of verb in singular present)
 - if next tag is JJ, then RBR is likelier than JJR (adverb instead of adjective)

More features (2)
- Lexical features
 - if one of the previous tags is not, then VB is likelier than VBP
- Morphological features
 - if word ends in -ation it is most likely an NN
 - if word ends in -ly it is most likely an adverb

Using additional features
- Using more features in a conditional probability distribution?

 \[
p(f_0|w_0, f_0, ..., f_n)
 \]
- Sparse data problems (insufficient statistics for reliable estimation of the distribution)
- Idea: First apply HMM, then fix errors with additional features

Applying the model to training data
- We can use the HMM tagger to tag the training data
- Then, we can compare predicted tags to true tags

 \[
 \begin{array}{ccccccc}
 \text{words} & \text{the} & \text{old} & \text{man} & \text{the} & \text{boat} \\
 \text{predicted} & \text{DET} & \text{JJ} & \text{NN} & \text{DET} & \text{NN} \\
 \text{true tags} & \text{DET} & \text{NN} & \text{VB} & \text{DET} & \text{NN} \\
 \end{array}
 \]
- How can we fix these errors? Possible transformation rules:
 - change NN to VBP if no verb in sentence
 predicted: \text{DET} \text{JJ} \text{VB} \text{DET} \text{NN}
 - change JJ to NN if followed by VB
 predicted: \text{DET} \text{NN} \text{VB} \text{DET} \text{NN}
Transformation based learning

- First, baseline tagger
 - most frequent tag for word: \(\text{argmax}_t \, \text{p}(t|w) \)
 - Hidden Markov Model tagger

- Then apply transformations that fix the errors
 - go through the sequence word by word
 - if a feature is present in a current example,
 - apply rule (change tag)

Learning transformations

- Given: words with their true tags
- Tag sentence with baseline tagger

- Repeat
 - find transformation \(\theta \) that minimizes \(\text{error} \)
 - apply transformation to sentence
 - add transformation to list
- Output: ordered list of transformations

Applying the learned transformations

- Given: a new sentence that we want to tag
- Tag words with baseline tagger
- For each transformation rule (in the sequence they were learned):
 - For each word (in sentence \(\text{odt} \)):
 - apply transformation, if it matches
- Output: tags

Goal: minimizing error

- We need some metric to measure the error
- Here: number of wrongly assigned tags

\[
\text{error}(D, M) = 1 - \frac{\sum_{t=1}^{N} d(\text{predicted}, t)}{N}
\]

- General considerations for error functions:
 - Some errors are more costly than others
 - Detecting cancer if healthy vs. detecting healthy when cancer
 - Sometimes errors is difficult to assess (machine translation output different from human translation may be still correct)

Overfitting

- It may be possible to fix all errors in training
- The last transformations learned may fix only one error each
- Transformations that work in training may not work elsewhere, or may even be generally harmful
- To avoid overfitting: stop early

Generative modeling vs. discriminative training

- HMMs are an example for generative modeling
 - a model \(M \) is created that predicts the training data \(D \)
 - the model is broken up into smaller steps
 - for each step, a probability distribution is learned
 - model is optimized on \(p(D|M) \), how well it predicts the data \(D \)

- Transformation-based learning is an example for discriminative training
 - a method \(M \) is created to predict the training data \(D \)
 - it is improved by reducing prediction error
 - look for features that discriminate between faulty predictions and truth
 - model is optimized on error \((M, D) \), also called the loss function

Probabilities vs. rules

- HMMs: probabilities allow for \textit{graded decisions}, instead of just yes/no
- Transformation based learning: \textit{more features} can be considered
- We would like to combine both

\(\Rightarrow \) **Maximum Entropy models**

Maximum Entropy

- Each example (here: word \(w \)) is represented by a set of features \(\{ f_i \} \), here:
 - the word itself
 - morphological properties of the word
 - other words and tags surrounding the word
- The task is to classify the word into a class \(c_j \) (here: the POS tag)
- How well a feature \(f_i \) predicts a class \(c_j \) is defined by a parameter \(\alpha(f_i, c_j) \)
- Maximum entropy model:

\[
p(c_j | w) = \prod_{f_i \in w} \alpha(f_i, c_j)
\]
Maximum Entropy training

- Feature selection
 - given the large number of possible features, which ones will be part of the model?
 - we do not want unreliable and rarely occurring features (avoid overfitting)
 - good features help us to reduce the number of classification errors

- Setting the parameter values $a(f_i, c_j)$
 - $a(f_i, c_j)$ are real numbered values, similar to probabilities
 - we want to ensure that the expected co-occurrence of features and classes matches between the training data and the model
 - otherwise we want to have no bias in the model (maintain maximum entropy)
 - training algorithm: general iterative scaling

POS tagging tools

- Three commonly used, freely available tools for tagging:
 - **TnT** by Thorsten Brants (2000): Hidden Markov Model
 http://www.coli.uni-saarland.de/~thorsten/tnt/
 - **Brill tagger** by Eric Brill (1995): transformation based learning
 http://www.cs.jhu.edu/~br-111/
 - **MXPOST** by Adwait Ratnaparkhi (1996): maximum entropy model

- All have similar performance (~90% on Penn Treebank English)