Data Intensive Linguistics — Lecture 5

Tagging (I): Part-of-speech tagging with HMM

Philipp Koehn
23 January 2006

Parts of Speech

- **Open class words** (or content words)
 - nouns, verbs, adjectives, adverbs
 - mostly content-bearing; they refer to objects, actions, and features in the world
 - open class, since there is no limit to what these words are, new ones are added all the time (e.g. email, website).

- **Close class words**
 - pronouns, determiners, prepositions, connectives, ...
 - there is a limited number of these
 - mostly functional: to tie the concepts of a sentence together

Parts of Speech (2)

- There are about 30-100 parts of speech
 - distinguish between names and abstract nouns?
 - distinguish between plural noun and singular noun?
 - distinguish between past tense verb and present tense word?
- Identifying the parts of speech is a first step towards syntactic analysis

Ambiguous words

- For instance: like
 - verb: I like the class.
 - preposition: He is like me.

 - Another famous example: *Time flies like an arrow*

 - Most of the time, the local context disambiguates the part of speech

Part-of-speech tagging

- **Task**: Given a text of English, identify the parts of speech of each word

- **Example**
 - Input: Word sequence
 - *Time flies like an arrow*
 - Output: Tag sequence
 - *Time/NN flies/VB like/P an/DET arrow/NN*

- What will help us to tag words with their parts-of-speech?

Bayes rule

- We want to find the best part-of-speech tag sequence T for a sentence S:
 $$ \text{argmax}_T p(T|S) $$

- Bayes rule gives us:
 $$ p(T|S) = \frac{p(S|T) p(T)}{p(S)} $$

- We can drop $p(S)$ if we are only interested in argmax_T:
 $$ \text{argmax}_T p(T|S) = \text{argmax}_T p(S|T) p(T) $$

Relevant knowledge for POS tagging

- The word itself
 - Some words may only be nouns, e.g. *arrow*
 - Some words are ambiguous, e.g. *like*; *flies*
 - Probabilities may help, if one tag is more likely than another

- Local context
 - Two determiners rarely follow each other
 - Two last forms verbs rarely follow each other
 - Determiner is almost always followed by adjective or noun

Decomposing the model

- The mapping $p(S|T)$ can be decomposed into
 $$ p(S|T) = \prod_i p(u_i|v_i) $$

- $p(T)$ could be called a *part-of-speech language model*, for which we can use an n-gram model:
 $$ p(T) = p(t_1) p(t_2|t_1) p(t_3|t_1,t_2)...p(t_n|t_{n-2},...t_1) $$

- We can estimate $p(S|T)$ and $p(T)$ with maximum likelihood estimation (and maybe some smoothing)
Hidden Markov Model (HMM)

- The model we just developed is a Hidden Markov Model (HMM).

- Elements of an HMM model:
 - a set of states (here: the tags)
 - an output alphabet (here: words)
 - initial state (here: beginning of sentence)
 - state transition probabilities (here: \(p(s_i | s_{i-1}) \))
 - symbol emission probabilities (here: \(p(w_i | s_i) \))

Graphical representation

- When tagging a sentence, we are walking through the state graph:

Search for the best tag sequence

- We have defined a model, but how do we use it?
 - given: word sequence
 - wanted: tag sequence

- If we consider a specific tag sequence, it is straightforward to compute its probability:

\[
p(S | T) p(T) = \prod_i p(w_i | t_i) p(t_i | t_{i-1}, t_{i-2})
\]

- Problem: if we have on average \(c \) choices for each of the \(n \) words, there are \(c^n \) possible tag sequences, maybe too many to efficiently evaluate.

Walking through the states

- First, we go to state NNP to emit time:

Walking through the states (2)

- Then, we go to state VB to emit flies:

Walking through the states (3)

- Of course, there are many possible paths:

Viterbi algorithm

- Intuition: Since state transition out of a state only depend on the current state (and not previous states), we can record for each state the optimal path.

- We record:
 - cheapest cost to state \(j \) at step \(s \) in \(\delta_j(s) \)
 - backtrace from that state to best predecessor \(\psi_j(s) \)

- Stepping through all states at each time step allows us to compute:

\[
\delta_j(s+1) = \max_{k \in S} \delta_k(s) p(k | j) p(w_{s+1} | k)
\]

\[
\psi_j(s+1) = \arg \max_{k \in S} \delta_k(s) p(k | j) p(w_{s+1} | k)
\]

- Best final state is \(\arg \max_{k \in S} \delta_k(S+1) \), we can backtrack from there.
Other tagging tasks

- A number of problems can be framed as tagging problems:
- **BaseNP chunking**: for text processing purposes it is useful to detect base noun phrases that correspond to concepts, e.g. *department of defense*
- **Named entity recognition**: it may also be useful to find names of persons, organizations, etc. in the text, e.g. *Tony Blair*
- **Accent restoration**: when keyboards lack the proper keys, it is common to not write the accents in Spanish or French. We may want to restore them.
- **Case restoration**: if we just get lowercase text, we may want to restore proper casing, e.g. *the river Thames*

BaseNP chunking

- Task: find basic noun phrases (facilitates parsing, information extraction)
- Example: *the student* said *the exam question* is hard
- Three tags
 - B = beginning of baseNP
 - I = continuing baseNP (internal)
 - O = other word
- Example: the/B student/I said/O the/B exam/I question/I is/O hard/O
- Tagging task: assign tags (B, I, O) to each word