Data Intensive Linguistics — Lecture 5
Tagging (I): Part-of-speech tagging with HMM

Philipp Koehn

23 January 2006
Parts of Speech

• **Open class words** (or content words)

 – nouns, verbs, adjectives, adverbs
 – mostly content-bearing: they refer to objects, actions, and features in the world
 – *open* class, since there is no limit to what these words are, new ones are added all the time (*email, website*).

• **Close class words**

 – pronouns, determiners, prepositions, connectives, ...
 – there is a limited number of these
 – mostly functional: to tie the concepts of a sentence together
Parts of Speech (2)

• There are about 30-100 parts of speech
 – distinguish between names and abstract nouns?
 – distinguish between plural noun and singular noun?
 – distinguish between past tense verb and present tense word?

• Identifying the parts of speech is a first step towards syntactic analysis
Ambiguous words

• For instance: *like*

 – verb: *I like the class.*
 – preposition: *He is like me.*

• Another famous example: *Time flies like an arrow*

• Most of the time, the local context disambiguated the part of speech
Part-of-speech tagging

- Task: Given a text of English, identify the parts of speech of each word

- Example
 - Input: Word sequence
 \textit{Time flies like an arrow}
 - Output: Tag sequence
 \textit{Time/NN flies/VB like/P an/DET arrow/NN}

- What will help us to tag words with their parts-of-speech?
Relevant knowledge for POS tagging

• The word itself
 – Some words may only be nouns, e.g. *arrow*
 – Some words are ambiguous, e.g. *like, flies*
 – Probabilities may help, if one tag is more likely than another

• Local context
 – two determiners rarely follow each other
 – two base form verbs rarely follow each other
 – determiner is almost always followed by adjective or noun
Bayes rule

• We want to find the best part-of-speech tag sequence T for a sentence S:

$$\text{argmax}_T p(T|S)$$

• Bayes rule gives us:

$$p(T|S) = \frac{p(S|T) p(T)}{p(S)}$$

• We can drop $p(S)$ if we are only interested in argmax_T:

$$\text{argmax}_T p(T|S) = \text{argmax}_T p(S|T) p(T)$$
Decomposing the model

• The mapping $p(S|T)$ can be decomposed into

$$p(S|T) = \prod_i p(w_i|t_i)$$

• $p(T)$ could be called a *part-of-speech language model*, for which we can use an n-gram model:

$$p(T) = p(t_1) p(t_2|t_1) p(t_3|t_1,t_2) ... p(t_n|t_{n-2},t_{n-1})$$

• We can estimate $p(S|T)$ and $p(T)$ with maximum likelihood estimation (and maybe some smoothing)
Hidden Markov Model (HMM)

- The model we just developed is a **Hidden Markov Model**

- Elements of an HMM model:
 - a set of states (here: the tags)
 - an output alphabet (here: words)
 - initial state (here: beginning of sentence)
 - state transition probabilities (here: $p(t_n|t_{n-2}, t_{n-1})$)
 - symbol emission probabilities (here: $p(w_i|t_i)$)
Graphical representation

• When tagging a sentence, we are walking through the state graph:

• State transition probabilities: $p(t_n|t_{n-1})$
Graphical representation (2)

- At each state we emit a word:

- Symbol emission probabilities: $p(w_i|t_i)$
Search for the best tag sequence

• We have defined a model, but how do we use it?
 – given: word sequence
 – wanted: tag sequence

• If we consider a specific tag sequence, it is straight-forward to compute its probability

$$p(S|T) \cdot p(T) = \prod_i p(w_i|t_i) \cdot p(t_i|t_{i-2}, t_{i-1})$$

• Problem: if we have on average \(c\) choices for each of the \(n\) words, there are \(c^n\) possible tag sequences, maybe too many to efficiently evaluate
Walking through the states

• First, we go to state *NN* to emit *time*:
Walking through the states (2)

• Then, we go to state *VB* to emit *flies*:
Walking through the states (3)

- Of course, there are many possible paths:

```
time    flies    like    an
```
Viterbi algorithm

- Intuition: Since state transition out of a state only depend on the current state (and not previous states), we can record for each state the optimal path

- We record:
 - cheapest cost to state j at step s in $\delta_j(s)$
 - backtrace from that state to best predecessor $\psi_j(s)$

- Stepping through all states at each time steps allows us to compute
 - $\delta_j(s + 1) = \max_{1 \leq i \leq N} \delta_i(s) p(t_i | t_j) p(w_s | t_j)$
 - $\psi_j(s + 1) = \arg\max_{1 \leq i \leq N} \delta_i(s) p(t_i | t_j) p(w_s | t_j)$

- Best final state is $\arg\max_{1 \leq i \leq N} \delta_i(S + 1)$, we can backtrack from there
Other tagging tasks

- A number of problems can be framed as tagging problems:

- **BaseNP chunking:** for text processing purposes it is useful to detect base noun phrases that correspond to concepts, e.g. *department of defense*

- **Named entity recognition:** it may also be useful to find names of persons, organizations, etc. in the text, e.g. *Tony Blair*

- **Accent restoration:** When keyboards lack the proper keys, it is common to not write the accents in Spanish or French. We may want to restore them.

- **Case restoration:** If we just get lowercased text, we may want to restore proper casing, e.g. *the river Thames*
BaseNP chunking

• Task: find basic noun phrases (facilitates parsing, information extraction)

• Example: [the student] said [the exam question] is hard

• Three tags
 – B = beginning of baseNP
 – I = continuing baseNP (internal)
 – O = other word

• Example: the/B student/I said/O the/B exam/I question/I is/O hard/O

• Tagging task: assign tags (B, I, O) to each word