Data Intensive Linguistics — Lecture 4
Language Modeling (I1): Smoothing and Back-Off
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Language Modeling Example

there is a big house
e Training set I buy a house
they buy the new house

p(big|a) = 0.5 p(is|there) =1 p(buy|they) =1
p(house|a) = 0.5 p(buyli) =1 p(albuy) = 0.5
p(new|the) =1  p(houselbig) =1 p(thelbuy) = 0.5
p(alis) =1 p(houselnew) =1 p(they| < s >) = .333

e Model

e Test sentence S: they buy a big house

e p(S)=0.333 x _1 .><,O.5,><‘Ot5,><‘ 1 _ =0.0833
they buy a big house
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Evaluation of language models
e We want to evaluate the quality of language models
e A good language model gives a high probability to real English

e \We measure this with cross entropy and perplexity
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Entropy rate of a language

e \We want to use entropy and perplexity to measure how well a model explains
the test data

e Recall entropy:

Zp log p(z

e Entropy over sequences wq, ..., w, from a language L:

H(wy,...,wn) =— Y _ p(W]") logp(W7")
WleL
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e Entropy over sequences will depend highly on how long these sequences are.
To have a more meaningful measure, we want to measure entropy per word,
also called the entropy rate:

1 1
EH(wl’ ey Wyy) = - g p(W7") log p(W7")
WreL

e To measure true entropy of a language L, we need to consider sequences of
infinite length

1
H(L) :nh_{%oﬁH<w1"'"w")
. 1 n n
= lim —— % p(W7") logp(W7')

wreL
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e This can be simplified (Shannon-McMillan-Breiman theorem) to:

1
H(L) = lim ——logp(W{")

n—oo N

e Intuitive explanation: If the sequence is infinite, we do not need to sum over
all possible sequences, since the infinite sequence contains all sequences
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Cross-entropy

e In practice, we do not have the real probability distribution p for the language
L, only a model m for it.

e \We define cross-entropy (replacing p with m) as

1
H(p,m)= lim ——logm(W{")

n—oo N

e True entropy of a language is an upper bound from cross-entropy:

H(p) < H(p,m)

e Cross entropy is useful measure how well the model fits the true distribution.
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Using cross-entropy

e |n practice, we do not have an infinite sequence, but a limited test set. However,
if the test set is large enough, its measured cross-entropy approximates the
true cross-entropy.

o Example: P(S) =0:333x 1 x0.5x0.5 x 1 =0.0833

they buy a big house

H(p,m) = —%logp(s)

1
= —g(log 0.333 +log 1 +¥O%r0 @‘Floa%;o-@"‘ 1&%})

ti;gy buy big house
1
_ _5(_1'586+ 0o+ -1+ -1+_0_)=0.7173
they buy a big house
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Perplexity
Perplexity is defined as

pp =2HPm)

_ 2—% i1 log m(wn|wi,...,wn_1)

In out example H(m,p) = 0.7173 = PP = 1.6441
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Intuitively, perplexity is the average number of choices at each point (weighted

by the model)

Perplexity is the most common measure to evaluate language models
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Recap from last lecture

e |f we estimate probabilities solely from counts, we give probability 0 to unseen
events (bigrams, trigrams, etc.)

e One attempt to address this was with add-one smoothing.
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Add-one smoothing: results

Church and Gale (1991a) experiment: 22 million words training, 22 million words
testing, from same domain (AP news wire), counts of bigrams:

Frequency r | Actual frequency | Expected frequency
in training in test in test (add one)
0 0.000027 0.000132
1 0.448 0.000274
2 1.25 0.000411
3 2.24 0.000548
4 3.23 0.000685
5 4.21 0.000822

We overestimate 0-count bigrams (0.000132 > 0.000027), but since there are so
many, they use up so much probability mass that hardly any is left.
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Using held-out data

We know from the test data, how much probability mass should be assigned
to certain counts.

We can not use the test data for estimation, because that would be cheating.

Divide up the training data: one half for count collection, one have for
collecting frequencies in unseen text.

Both halves can be switched and results combined to not lose out on training
data.
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Deleted estimation
Counts in training Ci(wy, ..., wy,)

Counts how often an ngram seen in training is seen in held-out training
C’h(wl,...,wn)

Number of ngrams with training count r: N,
Total times ngrams of training count r seen in held-out data: 7,
Held-out estimator:

I

pr(wi, ..., wy) = NN where count(wi, ..., w,) =7
r
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Using both halves

e Both halves can be switched and results combined to not lose out on training
data

Pr(wi, ..., wn) = where count(ws, ...,w,) =1
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Deleted estimation: results

e Much better:

Frequency r | Actual frequency | Expected frequency
in training in test in test (Good Turing)

0 0.000027 0.000037

1 0.448 0.396

2 1.25 1.24

3 2.24 2.23

4 3.23 3.22

5 4.21 4.22

e Still overestimates unseen bigrams (why?)
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Good-Turing discounting
Method based on the assumption of binomial distribution of frequencies.

Translate real counts r for words with adjusted counts r*:

E(NTJrl)

"= U0,

N, is the count of counts: number of words with frequency r.
The probability mass reserved for unseen events is E'(Ny)/N.

For large r (where N,._; is often 0), so various other methods can be applied
(don’t adjust counts, curve fitting to linear regression). See Manning+Schutze
for details.
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Good-Turing discounting: results

e Almost perfect:

Frequency r | Actual frequency | Expected frequency

in training in test in test (Good Turing)
0 0.000027 0.000027
1 0.448 0.446
2 1.25 1.26
3 2.24 2.24
4 3.23 3.24
5 4.21 4.22
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e If two events (bigrams, trigrams) are both seen with the same frequency, they
are given the same probability.

n-gram count
scottish beer is 0
scottish beer green 0
beer is 45
beer green 0

e |f there is not sufficient evidence, we may want to back off to lower-order

n-grams
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Combining estimators
e \We would like to use high-order n-gram language models
e ... but there are many ngrams with count O.

— Linear interpolation p;; of estimators p,, of different order n:

pli(wn‘wn—% ’wn—1) = A\ p1(wn)
+ )\2 pQ(wn‘wn—l)

+ A3 p1(wp|wpn—2, Wp—1)

e M1+ X+ A3=1
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Katz’s backing-off

e Another approach is to back-off to lower order n-gram language models

( (1 _ d(wn—Za wn—l)) p(wn—Qa wn—l)
if count(w,_s,w,_1) >0

pbo(wnlwn—Qawn—l) — <

a(wn—Qa wn—l) pbo(wn‘wn—l)

otherwise

e The weight a(w,_2,w,_1) given to the back-off path has to be chosen
appropriately. Because this gives probability mass to unseen events, the
maximum likelihood estimate has to be discounted (by d(w,_2,w, 1))
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General linear interpolation

e We can generalize interpolation and back-off:

Pri (W |Whn—2, Wp—1) = A (Wp—2, Wn—1) p1(Wy)
+ >\2(wn—27 wn—l) pZ(wn‘wn—l)

+ )\S(wn—Za wn—l) P1 (wn’wn—% wn—l)

e How do we set the \s ?
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Consideration for weights \(w,,_2, w, 1)
e Based on count(w,_o,w,_1): the more frequent the history, the higher \.

— Qrganize histories in bins with similar counts, and optimize the resulting few
A(bin(wy,_2,w,_1)) by optimizing perplexity on a limited development set

e Also consider entropy of predictions:

— both great deal and of that occur 178 times in a selection of novels by Jane
Austin

— of that is followed by 115 different words

— great deal is followed by 36 different words, 38% of the time of follows
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Other methods in language modeling

Language modeling is still an active field of research
There are many back-off and interpolation methods

Skip n-gram models: back-off to p(w,|w,_2)

Factored language models: back-off to word stems, part-of-speech tags

Syntactic language models: using parse trees

Language models trained on 200 billion words using 2 TB disk space
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