
Data Intensive Linguistics — Lecture 4
Language Modeling (II): Smoothing and Back-Off

Philipp Koehn

19 January 2006

PK DIL 19 January 2006

1

Language Modeling Example

• Training set
there is a big house

i buy a house
they buy the new house

• Model

p(big|a) = 0.5 p(is|there) = 1 p(buy|they) = 1
p(house|a) = 0.5 p(buy|i) = 1 p(a|buy) = 0.5
p(new|the) = 1 p(house|big) = 1 p(the|buy) = 0.5

p(a|is) = 1 p(house|new) = 1 p(they| < s >) = .333

• Test sentence S: they buy a big house

• p(S) = 0.333︸ ︷︷ ︸
they

× 1︸︷︷︸
buy

× 0.5︸︷︷︸
a

× 0.5︸︷︷︸
big

× 1︸︷︷︸
house

= 0.0833

PK DIL 19 January 2006

2

Evaluation of language models

• We want to evaluate the quality of language models

• A good language model gives a high probability to real English

• We measure this with cross entropy and perplexity

PK DIL 19 January 2006

3

Entropy rate of a language

• We want to use entropy and perplexity to measure how well a model explains
the test data

• Recall entropy:

H(p) = −
∑

x

p(x) log p(x)

• Entropy over sequences w1, ..., wn from a language L:

H(w1, ..., wn) = −
∑

W n
1 ∈L

p(Wn
1) log p(Wn

1)

PK DIL 19 January 2006

4

• Entropy over sequences will depend highly on how long these sequences are.
To have a more meaningful measure, we want to measure entropy per word,
also called the entropy rate:

1
n
H(w1, ..., wn) = −1

n

∑
W n

1 ∈L

p(Wn
1) log p(Wn

1)

• To measure true entropy of a language L, we need to consider sequences of
infinite length

H(L) = lim
n→∞

1
n
H(w1, ..., wn)

= lim
n→∞

−1
n

∑
W n

1 ∈L

p(Wn
1) log p(Wn

1)

PK DIL 19 January 2006

5

• This can be simplified (Shannon-McMillan-Breiman theorem) to:

H(L) = lim
n→∞

−1
n

log p(Wn
1)

• Intuitive explanation: If the sequence is infinite, we do not need to sum over
all possible sequences, since the infinite sequence contains all sequences

PK DIL 19 January 2006

6

Cross-entropy

• In practice, we do not have the real probability distribution p for the language
L, only a model m for it.

• We define cross-entropy (replacing p with m) as

H(p, m) = lim
n→∞

−1
n

log m(Wn
1)

• True entropy of a language is an upper bound from cross-entropy:

H(p) ≤ H(p, m)

• Cross entropy is useful measure how well the model fits the true distribution.

PK DIL 19 January 2006

7

Using cross-entropy

• In practice, we do not have an infinite sequence, but a limited test set. However,
if the test set is large enough, its measured cross-entropy approximates the
true cross-entropy.

• Example: p(S) = 0.333︸ ︷︷ ︸
they

× 1︸︷︷︸
buy

× 0.5︸︷︷︸
a

× 0.5︸︷︷︸
big

× 1︸︷︷︸
house

= 0.0833

H(p, m) = −1
5

log p(S)

= −1
5
(log 0.333︸ ︷︷ ︸

they

+ log 1︸︷︷︸
buy

+ log 0.5︸ ︷︷ ︸
a

+ log 0.5︸ ︷︷ ︸
big

+ log 1︸︷︷︸
house

)

= −1
5
(−1.586︸ ︷︷ ︸

they

+ 0︸︷︷︸
buy

+ −1︸︷︷︸
a

+ −1︸︷︷︸
big

+ 0︸︷︷︸
house

) = 0.7173

PK DIL 19 January 2006

8

Perplexity

• Perplexity is defined as

PP = 2H(p,m)

= 2−
1
n

∑n
i=1 log m(wn|w1,...,wn−1)

• In out example H(m, p) = 0.7173 ⇒ PP = 1.6441

• Intuitively, perplexity is the average number of choices at each point (weighted
by the model)

• Perplexity is the most common measure to evaluate language models

PK DIL 19 January 2006

9

Recap from last lecture

• If we estimate probabilities solely from counts, we give probability 0 to unseen
events (bigrams, trigrams, etc.)

• One attempt to address this was with add-one smoothing.

PK DIL 19 January 2006

10

Add-one smoothing: results
Church and Gale (1991a) experiment: 22 million words training, 22 million words
testing, from same domain (AP news wire), counts of bigrams:

Frequency r Actual frequency Expected frequency
in training in test in test (add one)

0 0.000027 0.000132
1 0.448 0.000274
2 1.25 0.000411
3 2.24 0.000548
4 3.23 0.000685
5 4.21 0.000822

We overestimate 0-count bigrams (0.000132 > 0.000027), but since there are so
many, they use up so much probability mass that hardly any is left.

PK DIL 19 January 2006

11

Using held-out data

• We know from the test data, how much probability mass should be assigned
to certain counts.

• We can not use the test data for estimation, because that would be cheating.

• Divide up the training data: one half for count collection, one have for
collecting frequencies in unseen text.

• Both halves can be switched and results combined to not lose out on training
data.

PK DIL 19 January 2006

12

Deleted estimation

• Counts in training Ct(w1, ..., wn)

• Counts how often an ngram seen in training is seen in held-out training
Ch(w1, ..., wn)

• Number of ngrams with training count r: Nr

• Total times ngrams of training count r seen in held-out data: Tr

• Held-out estimator:

ph(w1, ..., wn) =
Tr

NrN
where count(w1, ..., wn) = r

PK DIL 19 January 2006

13

Using both halves

• Both halves can be switched and results combined to not lose out on training
data

ph(w1, ..., wn) =
T 01

r + T 10
r

N(N01
r + N10

r)
where count(w1, ..., wn) = r

PK DIL 19 January 2006

14

Deleted estimation: results

• Much better:

Frequency r Actual frequency Expected frequency
in training in test in test (Good Turing)

0 0.000027 0.000037
1 0.448 0.396
2 1.25 1.24
3 2.24 2.23
4 3.23 3.22
5 4.21 4.22

• Still overestimates unseen bigrams (why?)

PK DIL 19 January 2006

15

Good-Turing discounting

• Method based on the assumption of binomial distribution of frequencies.

• Translate real counts r for words with adjusted counts r∗:

r∗ = (r + 1)
E(Nr+1)
E(Nr)

Nr is the count of counts: number of words with frequency r.

• The probability mass reserved for unseen events is E(N1)/N .

• For large r (where Nr−1 is often 0), so various other methods can be applied
(don’t adjust counts, curve fitting to linear regression). See Manning+Schütze
for details.

PK DIL 19 January 2006

16

Good-Turing discounting: results

• Almost perfect:

Frequency r Actual frequency Expected frequency
in training in test in test (Good Turing)

0 0.000027 0.000027
1 0.448 0.446
2 1.25 1.26
3 2.24 2.24
4 3.23 3.24
5 4.21 4.22

PK DIL 19 January 2006

17

Is smoothing enough?

• If two events (bigrams, trigrams) are both seen with the same frequency, they
are given the same probability.

n-gram count

scottish beer is 0
scottish beer green 0

beer is 45
beer green 0

• If there is not sufficient evidence, we may want to back off to lower-order
n-grams

PK DIL 19 January 2006

18

Combining estimators

• We would like to use high-order n-gram language models

• ... but there are many ngrams with count 0.

→ Linear interpolation pli of estimators pn of different order n:

pli(wn|wn−2, wn−1) = λ1 p1(wn)

+ λ2 p2(wn|wn−1)

+ λ3 p1(wn|wn−2, wn−1)

• λ1 + λ2 + λ3 = 1

PK DIL 19 January 2006

19

Katz’s backing-off

• Another approach is to back-off to lower order n-gram language models

pbo(wn|wn−2, wn−1) =


(1− d(wn−2, wn−1)) p(wn−2, wn−1)

if count(wn−2, wn−1) > 0

α(wn−2, wn−1) pbo(wn|wn−1)
otherwise

• The weight α(wn−2, wn−1) given to the back-off path has to be chosen
appropriately. Because this gives probability mass to unseen events, the
maximum likelihood estimate has to be discounted (by d(wn−2, wn−1))

PK DIL 19 January 2006

20

General linear interpolation

• We can generalize interpolation and back-off:

pli(wn|wn−2, wn−1) = λ1(wn−2, wn−1) p1(wn)

+ λ2(wn−2, wn−1) p2(wn|wn−1)

+ λ3(wn−2, wn−1) p1(wn|wn−2, wn−1)

• How do we set the λs ?

PK DIL 19 January 2006

21

Consideration for weights λ(wn−2, wn−1)

• Based on count(wn−2, wn−1): the more frequent the history, the higher λ.

→ Organize histories in bins with similar counts, and optimize the resulting few
λ(bin(wn−2, wn−1)) by optimizing perplexity on a limited development set

• Also consider entropy of predictions:

– both great deal and of that occur 178 times in a selection of novels by Jane
Austin

– of that is followed by 115 different words
– great deal is followed by 36 different words, 38% of the time of follows

PK DIL 19 January 2006

22

Other methods in language modeling

• Language modeling is still an active field of research

• There are many back-off and interpolation methods

• Skip n-gram models: back-off to p(wn|wn−2)

• Factored language models: back-off to word stems, part-of-speech tags

• Syntactic language models: using parse trees

• Language models trained on 200 billion words using 2 TB disk space

PK DIL 19 January 2006

