Data Intensive Linguistics — Lecture 3 Language Modeling

Philipp Koehn

16 January 2006

16 January 2006

Language models

- Language models answer the question: How likely is a string of English words good English?
 - the house is big \rightarrow good
 - the house is $xxI \rightarrow worse$
 - house big is the \rightarrow bad
- Uses of language models
 - Speech recognition
 - Machine translation
 - Optical character recognition
 - Handwriting recognition
 - Language detection (English or Finnish?)

Applying the chain rule

- Given: a string of English words $W = w_1, w_2, w_3, ..., w_n$
- Question: what is p(W)?
- Sparse data: Many good English sentences will not have been seen before.
- \rightarrow Decomposing p(W) using the chain rule:

 $p(w_1, w_2, w_3, \dots, w_n) = p(w_1) \ p(w_2|w_1) \ p(w_3|w_1, w_2) \dots p(w_n|w_1, w_2, \dots, w_{n-1})$

Markov chain

• Markov assumption:

- only previous history matters
- limited memory: only last k words are included in history (older words less relevant)
- $\rightarrow k$ th order Markov model
- For instance 2-gram language model:

 $p(w_1, w_2, w_3, \dots, w_n) = p(w_1) \ p(w_2|w_1) \ p(w_3|w_2) \dots p(w_n|w_{n-1})$

• What is conditioned on, here w_{n-1} is called the **history**

Estimating n-gram probabilities

• We are back in comfortable territory: maximum likelihood estimation

$$p(w_2|w_1) = \frac{count(w_1, w_2)}{count(w_1)}$$

- Collect counts over a large text corpus
- Millions to billions of words are easy to get

Size of the model

- For each n-gram (e.g. *the big house*), we need to store a probability
- Assuming 20,000 distinct words

Model	Max. number of parameters
Oth order (unigram)	20,000
1st order (bigram)	$20,000^2 = 400$ million
2nd order (trigram)	$20,000^3 = 8$ trillion
3rd order (4-gram)	$20,000^4 = 160$ quadrillion

• In practice, 3-gram LMs are typically used

Size of model: practical example

• Trained on 10 million sentences from the Gigaword corpus (text collection from New York Times, Wall Street Journal, and news wire sources), about 275 million words.

1-gram	716,706
2-gram	12,537,755
3-gram	22,174,483

• Worst case for number of distinct n-grams is linear with the corpus size.

How good is the LM?

- A good model assigns a text of real English a high probability
- This can be also measured with per word entropy

$$H(W_1^n) = \lim_{n \to \inf} \frac{1}{n} p(W_1^n) \log p(W_1^n)$$

• Or, perplexity

 $perplexity(W) = 2^{H(W)}$

Training set and test set

- We learn the language model from a **training set**, i.e. we collect statistics for n-grams over that sample and estimate the conditional n-gram probabilities.
- We evaluate the language model on a hold-out test set
 - much smaller than training set (thousands of words)
 - not part of the training set!
- We measure perplexity on the test set to gauge the quality of our language model.

Example: unigram

	there is a big house
• Training set	i buy a house
	they buy the new house

• Model
$$\begin{array}{c|c} p(there) = 0.0714 & p(is) = 0.0714 & p(a) = 0.1429 \\ p(big) = 0.0714 & p(house) = 0.2143 & p(i) = 0.0714 \\ p(buy) = 0.1429 & p(they) = 0.0714 & p(the) = 0.0714 \\ p(new) = 0.0714 & \end{array}$$

• Test sentence S: they buy a big house

•
$$p(S) = \underbrace{0.0714}_{they} \times \underbrace{0.1429}_{buy} \times \underbrace{0.0714}_{a} \times \underbrace{0.1429}_{big} \times \underbrace{0.2143}_{house} = 0.0000231$$

Informatics

DIL

Example: bigram

	there is a big house
Training set	i buy a house
	they buy the new house

• Model
$$\begin{array}{|c|c|c|c|} p(big|a) = 0.5 & p(is|there) = 1 & p(buy|they) = 1 \\ p(house|a) = 0.5 & p(buy|i) = 1 & p(a|buy) = 0.5 \\ p(new|the) = 1 & p(house|big) = 1 & p(the|buy) = 0.5 \\ p(a|is) = 1 & p(house|new) = 1 & p(they| < s >) = .333 \\ \end{array}$$

• Test sentence S: they buy a big house

•
$$p(S) = \underbrace{0.333}_{they} \times \underbrace{1}_{buy} \times \underbrace{0.5}_{a} \times \underbrace{0.5}_{big} \times \underbrace{1}_{house} = 0.0833$$

10 informatics

Unseen events

- Another example sentence S_2 : they buy a new house.
- Bigram *a new* has never been seen before
- $p(new|a) = 0 \rightarrow p(S_2) = 0$
- ... but it is a good sentence!

Two types of zeros

- Unknown words
 - handled by an UNKNOWN word token
- Unknown n-grams
 - smoothing by giving them some low probability
 - back-off to lower order n-gram model
- Giving probability mass to unseen events reduces available probability mass for seen events ⇒ not maximum likelihood estimates anymore

Add-one smoothing

For all possible n-grams, add the count of one. Example:

bigram	count	$\rightarrow p(w_2 w_1)$	count+1	$\rightarrow p(w_2 w_1)$
a big	1	0.5	2	0.18
a house	1	0.5	2	0.18
a new	0	0	1	0.09
a the	0	0	1	0.09
a is	0	0	1	0.09
a there	0	0	1	0.09
a buy	0	0	1	0.09
аа	0	0	1	0.09
ai	0	0	1	0.09

Add-one smoothing

- This is Bayesian estimation with a uniform prior. Recall: $argmax_M P(M|D) = argmax_M P(D|M) \times P(M)$
- Is too much probability mass wasted on unseen events?
 ↔ Are impossible/unlikely events estimated too high?
- How can we measure this?

Expected counts and test set counts

Church and Gale (1991a) experiment: 22 million words training, 22 million words testing, from same domain (AP news wire), counts of bigrams:

Frequency r	Actual frequency	Expected frequency
in training	in test	in test (add one)
0	0.000027	0.000132
1	0.448	0.000274
2	1.25	0.000411
3	2.24	0.000548
4	3.23	0.000685
5	4.21	0.000822

We overestimate 0-count bigrams (0.000132 > 0.000027), but since there are so many, they use up so much probability mass that hardly any is left.

Using held-out data

- We know from the test data, how much probability mass should be assigned to certain counts.
- We can not use the test data for estimation, because that would be cheating.
- Divide up the training data: one half for count collection, one have for collecting frequencies in unseen text.
- Both halves can be switched and results combined to not lose out on training data.

Deleted estimation

- Counts in training $C_t(w_1, ..., w_n)$
- Counts how often an ngram seen in training is seen in held-out training $C_h(w_1,...,w_n)$
- Number of ngrams with training count r: N_r
- Total times ngrams of training count r seen in held-out data: T_r
- Held-out estimator:

$$p_h(w_1, ..., w_n) = \frac{T_r}{N_r N}$$
 where $count(w_1, ..., w_n) = r$

18 informatics

Using both halves

• Both halves can be switched and results combined to not lose out on training data

$$p_h(w_1, ..., w_n) = \frac{T_r^{01} + T_r^{10}}{N(N_r^{01} + N_r^{10})} \text{ where } count(w_1, ..., w_n) = r$$