Data Intensive Linguistics — Lecture 2 Introduction (II): Probability and Information Theory

Philipp Koehn 12 January 2006

12 January 2006

informatics

12 January 2006

Variance

Recap

• Given word counts we can estimate a probability distribution:

• Another useful concept is conditional probability

Variance is defined as

 $P(w) = \frac{count(w)}{\sum_{w'} count(w')}$

 $p(w_1, w_2) = p(w_1) \ p(w_2|w_1)$

 $p(w_2|w_1)$

Chain rule:

Bayes rule:

 $p(x|y) = \frac{p(y|x) \ p(x)}{p(y)}$

$$Var(X) = E((X - E(X))^2) = E(X^2) - E^2(X)$$

 $Var(X) = \sum_x p(x) (x - E(X))^2$

- Intuitively, this is a measure how far events diverge from the mean (expectation)
- ullet Related to this is **standard deviation**, denoted as σ .

$$\begin{aligned} Var(X) &= \sigma^2 \\ E(X) &= \mu \end{aligned}$$

12 January 2006

finformatics

Standard distributions

- Uniform: all events equally likely
 - $\ \forall x, y : p(x) = p(y)$
- example: roll of one dice
- Binomial: a serious of trials with only only two outcomes
 - probability p for each trial, occurrence r out of n times: $b(r; n, p) = \binom{n}{r} p^r (1-p)^{n-r}$
 - a number of coin tosses

12 January 2006

7 inf^{School of}tics

Estimation revisited

• We introduced last lecture an estimation of probabilities based on frequencies:

$$P(w) = \frac{count(w)}{\sum_{w'} count(w')}$$

- Alternative view: Bayesian: what is the most likely model given the data p(M|D)
- Model and data are viewed as random variables
 - $\mathsf{model}\ M$ as random variable
 - data ${\cal D}$ as random variable

finformatics

Expectation

- ullet We introduced the concept of a random variable Xprob(X = x) = p(x)
- Example: Roll of a dice. There is a $\frac{1}{6}$ chance that it will be 1, 2, 3, 4, 5, or 6.
- ullet We define the **expectation** E(X) of a random variable as:

$$E(X) = \sum_{x} p(x) x$$

• Roll of a dice:

$$E(X) = \frac{1}{6} \times 1 + \frac{1}{6} \times 2 + \frac{1}{6} \times 3 + \frac{1}{6} \times 4 + \frac{1}{6} \times 5 + \frac{1}{6} \times 6 = 3.5$$

nf School of of of of of of of

anformatics

Variance (2)

• Roll of a dice:

$$\begin{split} Var(X) &= \frac{1}{6}(1-3.5)^2 + \frac{1}{6}(2-3.5)^2 + \frac{1}{6}(3-3.5)^2 \\ &+ \frac{1}{6}(4-3.5)^2 + \frac{1}{6}(5-3.5)^2 + \frac{1}{6}(6-3.5)^2 \\ &= \frac{1}{6}((-2.5)^2 + (-1.5)^2 + (-0.5)^2 + 0.5^2 + 1.5^2 + 2.5^2) \\ &= \frac{1}{6}(6.25 + 2.25 + 0.25 + 0.25 + 2.25 + 6.25) \\ &= 2.917 \end{split}$$

12 January 2006

- Standard distributions (2)
- Normal: common distribution for continuous values
 - value in the range $[-\inf,x]$, given expectation μ and standard deviation $\sigma:n(x;\mu,\sigma)=\frac{1}{\sqrt{2\pi}\mu}e^{-(x-\mu)^2/(2\sigma^2)}$ also called **Bell curve**, or **Gaussian**
- examples: heights of people, IQ of people, tree heights, ...

12 January 2006

12 January 2006

Bayesian estimation

ullet Reformulation of p(M|D) using Bayes rule:

$$p(M|D) = \frac{p(D|M) \ p(M)}{p(D)}$$

$$argmax_M \ p(M|D) = argmax_M \ p(D|M) \ p(M)$$

- ullet p(M|D) answers the question: What is the most likely model given the data
- ullet p(M) is a prior that prefers certain models (e.g. simple models)
- ullet The frequentist estimation of word probabilities p(w) is the same as Bayesian estimation with a uniform prior (no bias towards a specific model), hence it is also called the maximum likelihood estimation

12 January 2006

12 January 2006

† informatics

nformatics

Entropy example

One event

$$p(a) = 1 \qquad \qquad H(X) = -1\log_2 1$$
$$= 0$$

DIL 12 January 2006

Entropy example

2 equally likely events:

$$p(a) = 0.5$$

$$p(b) = 0.5$$

$$H(X) = -0.5 \log_2 0.5 - 0.5 \log_2 0.5$$

$$= -\log_2 0.5$$

$$= 1$$

Entropy

• An important concept is entropy: $H(X) = \sum_x -p(x) \; \log_2 p(x)$

• A measure for the degree of disorder

12 January 2006

12 informatics

Entropy example

4 equally likely events:

$$\begin{array}{lll} p(a) = 0.25 & & H(X) = -0.25 \log_2 0.25 - 0.25 \log_2 0.25 \\ p(b) = 0.25 & & -0.25 \log_2 0.25 - 0.25 \log_2 0.25 \\ p(c) = 0.25 & & -1 \log_2 0.25 \\ p(d) = 0.25 & & = -1 \log_2 0.25 \\ & = 2 & & \end{array}$$

13 informatics

f informatics

Entropy example

4 equally likely events, one more likely than the others:

$$\begin{array}{lll} p(a) = 0.7 & H(X) = -0.7 \log_2 0.7 - 0.1 \log_2 0.1 \\ p(b) = 0.1 & -0.1 \log_2 0.1 - 0.1 \log_2 0.1 \\ p(c) = 0.1 & = -0.7 \log_2 0.7 - 0.3 \log_2 0.1 \\ p(d) = 0.1 & = -0.7 \times -0.5146 - 0.3 \times -3.3219 \\ & = 0.36020 + 0.99658 \\ & = 1.35678 \end{array}$$

12 January 2006

14 inf^{School of} of tics

Entropy example

4 equally likely events, one much more likely than the others:

$$\begin{array}{lll} (X) & H(X) = & -0.97 \log_2 0.97 - 0.01 \log_2 0.01 \\ p(a) = & 0.97 & -0.01 \log_2 0.01 - 0.01 \log_2 0.01 \\ p(b) = & 0.01 & = & -0.97 \log_2 0.97 - 0.03 \log_2 0.01 \\ p(c) = & 0.01 & = & -0.97 \times -0.04394 - 0.03 \times -6.6439 \\ p(d) = & 0.04262 + 0.19932 \\ & = & 0.24194 \end{array}$$

Intuition behind entropy

- A good model has low entropy
- → it is more certain about outcomes
- For instance a translation table

e	f	p(e f)
the	der	0.8
that	der	0.2

is better than

e	f	p(e f)
the	der	0.02
that	der	0.01

• A lot of statistical estimation is about reducing entropy

Information theory and entropy

- ullet Assume that we want to encode a sequence of events X
- Each event is encoded by a sequence of bits
- For example
 - Coin flip: heads = 0, tails = 1 $\,$
 - 4 equally likely events: a = 00, b = 01, c = 10, d = 11
 - 3 events, one more likely than others: a = 0, b = 10, c = 11
 - Morse code: e has shorter code than q
- \bullet Average number of bits needed to encode $X \geq$ entropy of X

K DIL 12 January 2006

Entropy for letter sequences

Assuming a model with a limited window size

Model		Entropy
	Oth order	4.76
	1st order	4.03
	2nd order	2.8
hun	nan, unlimited	1.3

PK DIL 12 January 2006

17 informatics

The entropy of English

- \bullet We already talked about the probability of a word $p(\boldsymbol{w})$
- \bullet But words come in sequence. Given a number of words in a text, can we guess the next word $p(w_n|w_1,...,w_{n-1})?$
- Example: Newspaper article

C DIL 12 January 2006