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Introduction (I1): Probability and Information
Theory
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Expectation

e We introduced the concept of a random variable X

prob(X = z) = p(x)
e Example: Roll of a dice. There is a é chance that it will be 1, 2, 3, 4, 5, or 6.

o We define the expectation E(X) of a random variable as:
E(X)=,p@) <
o Roll of a dice:

E(X)=3(Xx14+EX2+EX3+5X4+Eix5+Ex6=35
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Variance (2)

e Roll of a dice:

1 1
Var(X) = %(1 —3.5)%+ 6(2 —3.5)% + 6(3 —3.5)?
1 1 1
2(4-352+2(5-35)2+ (6 —3.5)?
+5(4=35)"+2(5-3.5)" + (6 - 3.5)

1
= é((*2'5)2 + (~1.5)% + (—0.5)2 + 0.5% + 1.5% + 2.5%)

1
= 6(6'25 +2.25 + 0.25 + 0.25 + 2.25 + 6.25)
= 2917
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Standard distributions (2)

e Normal: common distribution for continuous values
— value in the range [— inf, z], given expectation p and standard deviation o:
2 2
n(z; p,0) = \/217 e~ (z—p1)*/(20%)
— also called Bell curve, or Gaussian
— examples: heights of people, 1Q of people, tree heights, ...
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Recap

e Given word counts we can estimate a probability distribution:

P(w) = Z:;’Z:utiv(ﬁ/()w’)

e Another useful concept is conditional probability
p(ws|w)

e Chain rule:
p(wy, wy) = p(wr) p(ws|wr)

e Bayes rule:

_ p(ylz) p(z)
p(zly) = p(y)
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Variance

e Variance is defined as
Var(X) = E((X - E(X))?) = E(X?) - E*(X)
Var(X) = 32, p(z) (z — E(X))?

o Intuitively, this is a measure how far events diverge from the mean (expectation)

o Related to this is standard deviation, denoted as o.

Var(X) = o2
E(X)=pn
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Standard distributions

e Uniform: all events equally likely
= Va,y : p(z) = p(y)
— example: roll of one dice
e Binomial: a serious of trials with only only two outcomes

— probability p for each trial, occurrence r out of n times:
b(r;n,p) = (M)p"(1 —p)"~"
— a number of coin tosses
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Estimation revisited

e We introduced last lecture an estimation of probabilities based on frequencies:

P(w) _ count(w)

= X, count(w’)
o Alternative view: Bayesian: what is the most likely model given the data
p(M|D)
e Model and data are viewed as random variables

— model M as random variable
— data D as random variable
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Bayesian estimation

Reformulation of p(M|D) using Bayes rule:
D|M) p(M
p(M|D) = p( |p(1))§7( )
argmazy p(M|D) = argmazy p(DIM) p(M)
o p(M|D) answers the question: What is the most likely model given the data

e p(M) is a prior that prefers certain models (e.g. simple models)

The frequentist estimation of word probabilities p(w) is the same as Bayesian
estimation with a uniform prior (no bias towards a specific model), hence it is
also called the maximum likelihood estimation
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Entropy example

One event
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Entropy example

4 equally likely events:

p(a) =025 H(X) = —0.25log, 0.25 — 0.25log, 0.25
p(b) =025 0.25log, 0.25 — 0.25log, 0.25
p(c) =025 T Y200082 8,20 T 1,20 1082 U,
p(d) =0.25 = —log,0.25
=2
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Entropy example

4 equally likely events, one much more
likely than the others:

(X) H(X) = — 0.971og, 0.97 — 0.01log, 0.01
o(a) = 0.97 ~0.011og, 0.01 — 0.01log, 0.01
p(b) = 0.01 = —0.9710g, 0.97 — 0.0310g, 0.01
]1';((2)) = g-gi = —0.97 x —0.04394 — 0.03 x —6.6439

= 0.04262 + 0.19932
= 0.24194
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Entropy

e An important concept is entropy:
H(X) =32, —p(z) log, p(x)

e A measure for the degree of disorder
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Entropy example

2 equally likely events:

p(a) = 0.5 H(X)= —0.5log,0.5—0.510g, 0.5
p(b) =05 = —log,0.5
=1
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Entropy example

4 equally likely events, one more likely
than the others:

H(X)= —0.7log,0.7 — 0.1l0og, 0.1
p(a) = 0.7
p(b) = 0.1 —0.1log, 0.1 — 0.110g, 0.1
p(c) = 0.1 = —0.710g, 0.7 — 0.3log, 0.1
p(d) =0.1
= —0.7 x —0.5146 — 0.3 x —3.3219
= 0.36020 + 0.99658
= 1.35678
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Intuition behind entropy
e A good model has low entropy
— it is more certain about outcomes

e For instance a translation table

e | f [pelf)
the | der 0.8 is better than
that | der 0.2

e | f [olf)
the | der | 0.02
that | der | 0.01

e A lot of statistical estimation is about reducing entropy
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Information theory and entropy The entropy of English

e Assume that we want to encode a sequence of events X e We already talked about the probability of a word p(w)
e Each event is encoded by a sequence of bits e But words come in sequence. Given a number of words in a text, can we guess

the next word p(wp|w1, ..., wn—1)?
For example

E le: N ticl
— Coin flip: heads = 0, tails =1 ° Hxample: Newspaper article

— 4 equally likely events: a =00, b =01, c=10,d =11
— 3 events, one more likely than others: a =0, b =10, c =11
— Morse code: e has shorter code than g

Average number of bits needed to encode X > entropy of X
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Entropy for letter sequences

Assuming a model with a limited window size

Model Entropy
Oth order 4.76
1st order 4.03
2nd order 2.8
human, unlimited 1.3
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