
MSc Design and Analysis of Parallel Algorithms Supplementary Note 1

Analysing Parallel Algorithms

We begin by reviewing the standard framework for sequential algorithm
analysis. We then consider the complications introduced by the introduction
of parallelism and look at some proposed parallel frameworks.

Analysing Sequential Algorithms

The design and analysis of sequential algorithms is a well developed field,
with a large body of commonly accepted results and techniques. This con-
sensus is built upon the fact that the methodology and notation of asymp-
totic analysis (the so-called “big-O” notation) deliver results which are ap-
plicable across all sequential computers, programming languages, compilers
and so on. This generality is achieved at the expense of a certain degree of
blurring, in which constant factors and non-dominating terms in the analy-
sis are simply ignored. In spite of this, the approach produces results which
allow useful comparisons of the essential performance characteristics of dif-
ferent algorithms which are reflected in practice when implemented on real
machines, in real languages through real compilers. For example, mergesort
with its Θ (n log n) run time is (in the worst case) an asymptotically better
sorting algorithm than insertion sort (Θ

(
n2
)
) on any normal sequential ma-

chine (although the actual problem size at which the dominance becomes
apparent will vary from implementation to implementation). Underpinning
this work is the “Random Access Machine” (RAM) model which is an ab-
straction of the essential capabilities and cost characteristics which unite all
sequential machines. The notation allows the description of “upper bounds”
(with O ()), “lower bounds” (with Ω ()) and “tight bounds” (with Θ ()) on
the behaviour of functions representing the time or space requirements of
an algorithm as its input problem size grows.

If you are unfamiliar with the big-O notation you should consult
any text book on algorithms from the reserve section of the library
(for example, Introduction to Algorithms by Cormen et al).

1



Analysing Parallel Algorithms

The sequential world benefits from a single universal abstract machine
model (the RAM) which accurately (enough) characterizes all sequential
computers and from a simple criterion of “better” for algorithm compari-
son (“less is better”, usually of run time, and occasionally of memory space).
Thinking parallel, we immediately encounter two complications.

Firstly, and fundamentally, there is no commonly agreed model of parallel
computation. The diversity of proposed and implemented parallel architec-
tures is such that it is not clear that such a model will ever emerge. Worse
than this, the variations in architecture capabilities and associated costs
mean that no such model can emerge, unless we are prepared to forgo cer-
tain tricks or shortcuts exploitable on one machine but not another. An
algorithm designed in some abstract model of parallelism may have asymp-
totically different performance on two different architectures (rather than
just the varying constant factors of different sequential machines).

Secondly, our notion of “better” even in the context of a single architec-
ture must surely take into account the number of processors involved, as
well as the run time. The trade-offs here will need careful consideration.

In this course we will not attempt to unify the irretrievably diverse. Thus
we will have a small number of machine models and will design algorithms
for our chosen problems for some or all of these. However, in doing so
we still hope to emphasize common principles of design which transcend
the differences in architecture. Equally, in some instances, we will exploit
particular features of one model where that leads to a novel or particularly
effective algorithm. Similarly, we will investigate notions of “better” as
they have been traditionally defined in the context of each model. We
will continue to employ the notation of asymptotic analysis, but note that
we must be particularly wary of constant factors in the parallel case - a
“constant factor” discrepancy of 32 in an asymptotically optimal algorithm
on a 64 processor machine is a serious matter.

2



The PRAM Model

The Parallel RAM (PRAM) is a model (or rather a family of models) form-
ing a natural generalisation of the RAM model beloved of the sequential
algorithms community. Its main attraction is simplicity, allowing the al-
gorithm designer to concentrate on the essence of a problem rather than
architectural distractions. The price of simplicity is a questionable appli-
cability to any realistic machines (in the sense that the cost of a PRAM
algorithm when implemented on a more practical system may be rather
different from that of its abstract cost, and worse, that the relative perfor-
mance of two PRAM algorithms may even be reversed when implemented
realistically).

The PRAM model allows some given number p of processors to access an
m location shared memory (where for our purposes m will always be “large
enough” and not of interest). Processors are synchronised for free when-
ever we like (to avoid worries about races) but can be executing different
instructions during any one step (though typical PRAM algorithms tend
not to exploit this significantly in practice). The EREW, CREW, ERCW
and CRCW variants (with CRCW having its own sub-variants) determine
the extent to which accesses to the shared memory can clash in any step,
and the way in which clashes (if allowed) are resolved.

• In the “common” write variant, concurrent writes to the same variable
are only allowed if all processors are trying to write the same value.

• In the “arbitrary” write variant, one of the written values is chosen
randomly to be that which actually succeeds.

• In the “priority” write variant, the written value is the one from the
processor with the highest priority (given some notion of priority, such
as smallest or largest processor ID).

• In the “associative” write variant, all clashing write values are com-
bined with some associative operator (such as “max”, “min” or “+”).

Each parallel step (one instruction in each processor) is charged one time
unit (wherein lies the source of most arguments about realistic applicabil-
ity). The run time of an algorithm is then modelled simply by the number

3



of such steps required and usually expressed as a function of problem size
n and p (which may itself be expressed as a function of n).

For example, consider the problem of summing an array of n integers.
With the CRCW-Associative PRAM we have a simple n processor single
time step (or asymptotically Θ (1) time) algorithm - each processor writes
a distinct array element to the “sum” location and the clash resolution
mechanism (with + as the associative operator) does the rest. By contrast,
in the EREW variant an obvious approach is to use n

2 processors to add
distinct pairs in the first step, then n

4 of these processors to add distinct
pairs of results in the second step, and so on. This process continues for
Θ (log n) steps until the final two sub-totals are summed into the intended
sum location by a single processor.

As well as absolute speed, a significant focus interest concerns the design
of “cost-efficient” or “cost-optimal” PRAM algorithms.

Definition 1 The cost of a parallel algorithm is the product of its run
time Tp and the number of processors used p. A parallel algorithm is cost
optimal when its cost matches the run time of the best known sequential
algorithm Ts for the same problem. The speed up S offered by a parallel
algorithm is simply the ratio of the run time of the best known sequential
algorithm to that of the parallel algorithm. Its efficiency E is the ratio of
the speed up to the number of processors used (so a cost optimal parallel
algorithm has speed up p and efficiency 1 (or Θ (1) asymptotically).

For example, the sequential run time of (comparison based) sorting is
known to be Θ (n log n). A cost optimal parallel sorting algorithm might

use O (n) processors for O (log n) time, or O
(

n
logn

)
processors for O

(
log2 n

)
time. On the other hand, an O

(
n2
)

processor, constant time sorting algo-
rithm would be faster than both of these (given enough processors) but not
cost-optimal.

The significance of cost optimality is that it implies good scalability down
to smaller sized machines. It is not difficult to see that a PRAM algorithm
for say n2 processors can be emulated on n processors with a corresponding
slow-down of a factor of n (each abstract time step is emulated by n real time
steps in which each processor plays the role of n imaginary processors). This

4



is called round-robin scheduling. Scaling down a cost optimal algorithm still
produces a fast (if slower than the original) algorithm. Scaling down a non-
optimal algorithm may soon produce a parallel algorithm which is slower
than the best sequential run time (consider scaling down an n3 processor
constant time sorting algorithm to n processors).

The degree to which cost-optimality is missed impacts upon the range
of problem and machine sizes over which an algorithm is useful (we will
investigate this idea soon). Notice that the definition of speed-up makes it
impossible to achieve greater than n fold speed-up with n processors (by
a similar emulation). Systems which claim “super-linear” speed-up will be
found on closer inspection to be either benefiting from different memory
hierarchy performance in the two cases, or to be hitting data dependent
instances of a problem in which a “better” sequential solution can indeed
by formulated by emulation of a parallel one (such as in branch-and-bound
search algorithms).

The notion of scaling PRAM algorithms down to smaller numbers of
processors is captured precisely in a “Brent’s Theorem”.

A PRAM algorithm involving t time steps and performing
a total of m operations, can be executed by p processors in
no more than t + (m−t)

p time steps.

Proof: Let si denote the number of computational operations performed
by A at step i, where 1 ≤ i ≤ t. By definition

∑t
i=1 si = m. Using p

processors we can simulate step i in time dsi

p e. The entire computation A
can be performed with p processors in time

∑t
i=1dsi

p e ≤
∑t

i=1
si+p−1

p

=
∑t

i=1
p
p +

∑t
i=1

si−1
p

= t + m−t
p

•

Notice that the theorem deals precisely with the number of operations
rather than the cost. These will differ if some processors are idle during
certain phases of an algorithm. Our simple summation algorithm is not cost
optimal, but Brent’s theorem tells us that a cost optimal execution exists

5



(though not necessarily how to express it as an algorithm). With a little
more thought we can adapt our algorithm to produce an asymptotically
optimal variant. The trick (which will be applicable in many situations), is
to have a smaller number of processors each do some of the work sequentially
and optimally, to improve the cost-efficiency to the extent that we can hide
a less efficient second phase in the O() notation. In this case, Brent tells us

that we should work with Θ
(

n
log n

)
processors. If each of these sums log n

items sequentially (in Θ (log n) time), and then co-operates in the original
parallel summation approach (but now with fewer items and steps), then
we still have a Θ (log n) time algorithm, but one which is now cost optimal.

Strictly speaking, neither round-robin scheduling nor Brent’s theorem
apply to CRCW-associative PRAM algorithms, since breaking the work
of what was a single steps across several steps can change the program’s
behaviour (for example, think about our single step summation algorithm).
However, the techniques can be adapted to apply to even this most powerful
model, with only a small constant-factor increase in time (and so no change
asymptotically).

The choice of PRAM variant can have an impact on the run time which
can be achieved for many problems. For example, the following CRCW-
Associative (+) algorithm allows constant-time comparison based sorting
of n items with n2 processors. This is not possible in any non-concurrent-
write variant (and could be argued to call into question the practicality of
this model).

for i = 0 to n-1 do in parallel

for j = 0 to n-1 do in parallel

if (A[i]>A[j]) or (A[i]=A[j] and i>j) then

wins[i] = 1; /* exploiting concurrent writes */

else

wins[i] = 0;

for i = 0 to n-1 do in parallel

A[wins[i]] = A[i]; /* writes to distinct locations */

Notice that the second clause in the conditional breaks ties between dupli-
cated values, ensuring that each entry has a distinct number of wins.

6


