
MSc Design and Analysis of Parallel Algorithms Maths Note

Maths for DAPA

This note describes some of the important mathematical notation and facts with
which you will need to become familiar as you study DAPA. In an attempt to be
pragmatic and useful, it will deliberately not provide full in-depth discussions, proofs
from first principles, generalisations and so on. If you are interested in such material
you could consult any decent standard text on algorithms (for example, Cormen et al,
Introduction to Algorithms).

1 Interesting Functions

Most of the results in DAPA boil down to comparing the performance of algorithms on
the basis of their run-times, expressed as a functions of problem size (usually denoted by
n). It is therefore important to have a feel for the relative significance of the functions
which typically occur. In decreasing order of “bigness” these include

• exponential functions, such as 2n (the n is in the “exponent”)

• polynomial functions, such as n2 (a constant exponent ≥ 1)

• polynomial functions, such as n
1
2 (a constant exponent < 1). Note that n

1
2 =

√
n.

• polylogarithmic functions, such as logk n (constant exponent of a log, meaning
(log n)k, not log(log n), which is different and will not occur in DAPA)

• constant “functions”, such as 6 (i.e. independent of n)

To give you a flavour of the relative speed with which these functions grow, consider
figures 1 and 2. Notice that these have been drawn to different scales!

2 Facts about logs and exponentials

In DAPA we will only ever come across base 2 logs, so whenever I write log you can
assume that’s what is meant. Here are some useful facts

• log a + log b = log(ab)

• log a− log b = log(a/b)

• 2log n = n

• (2a)b = 2(ab)

• (2a)(2b) = 2(a+b)

1

 0

 50

 100

 150

 200

 1 2 3 4 5 6 7 8 9 10

2n

n2

n

Figure 1: Some functions

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800 900 1000

n2

n
log2 n
log n

3

Figure 2: Some more functions

2

3 Summations

In DAPA we often find ourselves needing to sum up a sequence of terms, generated by
the iterations (or recursions) of an algorithm. In this context, the notation

Σb
i=a(f(i))

(where a is usually 0 or 1 and b is a simple function of n) is just a shorthand for

f(a) + f(a + 1) + f(a + 2) + + f(b− 1) + f(b)

For DAPA, the key examples, and their solutions are

• Σn
i=1(i) = n(n+1)

2

• Σn
i=0(2

i) = 1 + 2 + 4 + ... + 2n = 2n+1 − 1

• Σlog n − 1
i=0 (2i) = 1 + 2 + 4 + ... + n

2
= n− 1

4 Manipulating Big-O Notation

This section will be particularly lacking in mathematical detail! The full definition
of the notation is in the course notes, but my intention here is to give you enough
intuition to handle the situations which turn up within DAPA examples. This could
all be justified formally from the real definitions (but I don’t expect you to do that).

The key thing to understand is that when we say that some algorithm has, for exam-
ple, a run-time of Θ (n2), we are actually being quite imprecise. We are throwing away
any knowledge of constant factors (i.e. the difference between 2n2 and 1000n2) and also
any less significant additive terms. For example, the statements “T (n) = Θ (n2)” and
“T (n) = Θ (6.5n2 + 30n log n− 23)” are actually identical! Neither carries any more
information. We might write the second to remind us how we derived the statement,
but ultimately, both only tell us that the behaviour of T , as n grows large, is “similar”
to that of the behaviour of n2. This explains why, with care, we can appear to be quite
rash in our treatment of quantities in the notation.

4.1 An Example

Suppose that we have analysed some algorithm and computed its run time in terms of
three phases, which we believe take time roughly 6n2, 2n2+25 and 3n log n respectively.
We might then write

T (n) = Θ
(
6n2 + 2n2 + 25 + 3n log n

)
= Θ

(
n2 + n log n

)
= Θ

(
n2
)

Each apparent simplification, really changes nothing, it just throws away some more
spurious detail. In a nutshell, the only thing which really matters in a Θ () expression
is the term which involves the largest function of n (and even on that we can ignore
any constant factor).

Things get trickier when we have quantities which are functions of both n and p.
In such circumstances we have to be careful to only discard terms which are definitely
insignificant, irrespective of the relationship between n and p, or alternatively, to qualify
our statements with restrictions on that relationship.

3

4.2 Another Example

Suppose we have analysed some algorithm and decided that its run time satisfies

T (n, p) = Θ

(
n

p
+ log p

)

For example, it may have a first phase in which each processor handles an equal share of
data items independently, then a second phase in which some one-result-per-processor
items from the first phase are combined. Can we simplify this to

T (n, p) = Θ

(
n

p

)

No! If p = n then we have thrown away the most important term. Can we simplify it
to

T (n, p) = Θ (log p)

Again, no. If p was a constant, then again we have thrown away the most important
term. On the other hand, we could make this second simplification if we also required
that p = n. In effect we would be saying that the run time is logarithmic provided
that we have as many processors as input items.

4.3 Constant Functions

Sometimes we want to able to say that some operation or algorithm takes constant time
(i.e. that the time is independent of the number of data items). For example, adding 1
to every element of an n element array within an n processor PRAM has this property.
In asymptotic notation this is captured by saying T (n) = Θ (1). This doesn’t mean
that it takes exactly one step. We could just as well say T (n) = Θ (100000)! Both of
these statements simply say that the function is constant, independent of n. The first
is usually preferred, for simplicity.

4

