Compiling Technigues

Lecture 9: Intermediate Representations

Intermediate Representations

Source Front IR Middle | R Back Target
Code End End End Code

* Front end - produces an intermediate representation (IR)

* Middle end - transforms the IR into an equivalent IR that runs more
efficiently

* Back end - transforms the IR into native code
* IR encodes the compiler’'s knowledge of the program

* Middle end usually consists of several passes

Important Properties

* Decisions in IR design affect the speed and
efficiency of the compiler

* Some important IR properties
* Ease of generation
* Ease of manipulation
* Procedure size
* Freedom of expression
* Level of abstraction

* The importance of different properties varies

between compilers
* Selecting an appropriate IR for a compiler is critical

Types of IRs

* Structural
* Graphically oriented
* Heavily used in source-to-source translator
* Tend to be large
* Examples: Trees, DAGs

* Linear

* Pseudo-code for an abstract machine, level of abstraction
varies

* Simple, compact data structures, easier to rearrange
* Examples: 3-address code, stack machine code

* Hybrid
* Combination of graphs and linear code
* Example: control-flow graph

Level of Abstraction

* The level of detail exposed in an IR influences the
profitability and feasibility of different
optimisations.

* Two different representations of an array reference:

loadI 1 => r,

sub r,, r =>r,

subscnpf loadI 10 => r.
mult r,, r, => r,

sub r., r, =>r,

aﬂﬂ r;r rﬁ => rE

loadI @A => r.

High level AST: Add Ly Te => Ty
Good for memory load r, => i

disambiguation

Low level linear code:
Good for address calculation

Level of Abstraction

* Structural IRs are usually considered high-level
* Linear IRs are usually considered low-level
* Not necessarily true:

Low level AST loadArray A,i,j

High level linear code

Abstract Syntax Tree

* An AST Is the procedure’s parse tree with the
nodes for most non-terminal nodes removed:

x-2%*y

* Can use linearised form of the tree
* Easier to manipulate than pointers
* X 2y *-In postfix form
* - * 2 yxin prefix form

Directed Acyclic Graph

* A directed acyclic graph (DAG) is an AST with
a unique node for each value:

Same expression twice means
that the compiler might arrange
to evaluate it just oncel

Z<—X-2"Yy
WeX/2

* Makes sharing explicit
* Encodes redundancy

*

Stack Machine Code

Originally used for stack-based computers, now JVM

Exumpla: push x
X-2*y becomes i:ﬁ 32,
multiply
subtract
Advantages

* Compact form
* Introduced names are implicit, not explicit
* Simple to generate and execute code

Implicit names take up no space, but explicit ones do!

Useful where code Is transmitted over slow
communication links (the net)

Example: JVM Bytecode

* 256 possible opcodes

* |nstructions fall into a number of broad groups:
* Load and store (e.g. aload O,istore)
* Arithmetic and logic (e.q. ladd,fcmpl)
* Type conversion (e.qg. i2b,d2i)
* Object creation and manipulation (new,putfield)
* Operand stack management (e.g. swap,dup?2)
* Control transfer (e.qg. ifeq,goto)
* Method invocation and return (e.g. invokespecial,areturn)

* There are also a few instructions for a number
of more specialised tasks such as exception
throwing, synchronisation, etc.

Example: JVM Bytecode

* Stack-oriented

* VM Bytecode x86 assembly
0 iload 1 (for comparison)
1 iload 2
2 ladd add eax, edx
3 istore 3 mov ecx, eax

Example: JVM Bytecode

*Java:

outer:
for (int 1 = 2; 1 < 1000; i++)
for (int j = 2; J < 1i; J++)

(e)

if (1 % j == 0)
continue outer;

}

System.out.println (i) ;

{
{

Example:
*JVM Bytecode

JVM Bytecode

0: iconst_2 //
1: istore 1 //
2 iload_ 1 //
3: sipush 1000 //
6: if icmpge 44 //
9: iconst_ 2 //
10: 1istore_2 //
11: iload_ 2 //
12: iload 1 //
13: 1f icmpge 31 //
16: iload_1 //
17: iload 2 //
18: irem //
19: difne 25 //
22: goto 38 //
25: iinc 2, 1 //
28: goto 11 //
31: getstatic #84; //
34: iload_1 //
35: 1invokevirtual #85; //
38: 1iinc 1, 1 //
41: goto 2 //
44: return

000
f (1 < 1000)

o°

S S B A S N S iy S o P S S sl
Il
N

|_l
l_h

]
(1 %
continue

J++

end of j loop

J)

outer:
for

(int 1 = 2; 1 < 1000; 1i++)
for (int j = 2; J < 1i; J++)
if (1 % jJ == 0)

continue outer;

}

System.out.println

(1) ;

{

{

Field java/lang/System.out:Ljava/io/PrintStream;

1

Method java/io/PrintStream.println: (I)V

1++
end of 1 loop

Three Address Code

* |n general, three address code has statements of the
form: X « y op z
With 1 operator (op) and, at most, 3 names (X, y, & z)

tlh=Dbh ¢
a=btec+p >t2=b*d'
t3 = tl + t2;
* Advantages: a =13

* Resembles many machines
* Introduces a new set of names
* Compact form

Example: LLVM IR

* def foo(a b) a*a + 2*a*b + b*b;

define double @fooldouble %a, double Sb) |
entry:
multmp = fmul double %a, %a
Smultmpl = fmul double 2.000000e+00, %a
smultmp?. = fmul double =smultmpl, b
%addtmp = fadd double %Smultmp, %multmp?2
smultmp3 = tmul doiuible Sb. %b
%addtmp4d = fadd double %addtmp, %multmp?3
ret double %addtmpi

Quadruples

* Nalve representation of three address code
* Table of k * 4 small integers
* Simple record structure
* Easy to reorder
* Explicit names

load rl, y load 1 Y

loadI r2, 2 loadi 2 |2

mualt r3, r2, rl

sub r5, r4, r3 load 4 |X
sub b |4 |2

RISC assembly code Quadruples

SSA: Static Single Assignment
Form

* The main idea: each name defined exactly once
* Introduce ¢-functions to make it work

Original SSA-form

x «— 0 X, — 0

Vi "'— 0 Y, < 0

while (x < k) if (x, > k) goto next
x < x+1 loop: X, < Q(X,,X,;)

- + X
ey Y. < 9(¥orY:)
X, — %X, +1

}ri i }rl + x.!
1f (%, < k) goto loop
next: -

* Strengths of SSA form
* Sharper analysis
* @-functions give hints about placement

* enable many optimisations:
e.g. constant propagation, dead code elimination, strength reduction

Two Address Code

* Allows statements of the form x « x op vy
* Has 1 operator (op) and, at most, 2 names (x and y)

Example: £, < 2
Z<x-2*y becomes Tz < loady
£, — t, * t,
* Can be very compact 2 < load x
z <« z - t,

* Problems
* Machines no longer rely on destructive operations
* Difficult name space
* Destructive operations make reuse hard
* Good model for machines with destructive ops (PDP-11)

Control-Flow Graphs

, Bl |i=1
* Models the transfer of control in —
the procedure —
* Nodes in the graph are basic N I
blocks a1
if | <= lf goto B3
* Can be represented with three address 4 L oo 5
code or any other linear representation I I
* Edges in the graph represent control flow t5:i_1l >
2l = 10

!

EXIT

Multiple IRS

* Repeatedly lower the level of the intermediate

representation

* Each intermediate representation is suited towards certain
optimisations

Source | ant|”=‘-' T IMiddle 'R 2 |Middle| 'R 3 | Back Target
Code ' End | End " End " End " Code

* Example: the Open64 compiler
* WHIRL intermediate format

* Consists of 5 different IRs that are progressively more
detailed

Memory Models

* Register-to-register model

* Keep all values that can legally be stored in a register in
registers

* lgnore machine limitations on number of registers
* Compiler back-end must insert loads and stores

* Memory-to-memory model

* Keep all values in memory

* Only promote values to registers directly before they are
used

* Compiler back-end can remove loads and stores
* Compilers for RISC machines usually use
register-to-register
* Reflects programming model
* Easier to determine when registers are used

The Rest of the Story

* Representing the code is only part of an IR

* There are other necessary components
* Symbol table

* Constant table
* Representation, type

* Storage class, offset
* Storage map

* Overall storage layout
* Overlap information
* Virtual register assignments

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

