
Compiling Techniques
Lecture 7: Bottom-Up Parsing

Christophe Dubach

Overview

Bottom-Up Parsing

Finding Reductions

Handle Pruning

Shift-Reduce Parsers

Parsing Techniques
Top-down parsers (LL(1), recursive descent)

Start at the root of the parse tree and grow toward leaves

Pick a production & try to match the input

Bad “pick” ⇒ may need to backtrack

Some grammars are backtrack-free (LL(1), predictive parsing)

Bottom-up parsers (LR(1), operator precedence)

Start at the leaves and grow toward root

As input is consumed, encode possibilities in an internal state

Start in a state valid for legal first tokens

Bottom-up parsers handle a large class of grammars

Bottom-up Parsing
The point of parsing is to construct a derivation

A derivation consists of a series of rewrite steps

S⇒γ0 ⇒γ1 ⇒γ2 ⇒... ⇒γn–1 ⇒γn ⇒sentence

Each γi is a sentential form

If γ contains only terminal symbols, γ is a sentence in L(G)

If γ contains ≥ 1 non-terminals, γ is a sentential form

To get γi from γi–1, expand some NT A∈ γi–1 by using A→β

Replace the occurrence of A ∈ γi–1 with β to get γi

In a leftmost derivation, it would be the first NT A ∈ γi–1

A left-sentential form occurs in a leftmost derivation

A right-sentential form occurs in a rightmost derivation

Bottom-up Parsing

A bottom-up parser builds a derivation by working from the
input sentence back toward the start symbol S

S⇒γ0 ⇒γ1 ⇒γ2 ⇒... ⇒γn–1 ⇒γn ⇒sentence bottom-up

To reduce γi to γi–1 match some RHS β against γi then
replace β with its corresponding LHS, A. (assuming the
production A→β)

In terms of the parse tree, this is working from leaves to root

Nodes with no parent in a partial tree form its upper fringe

Since each replacement of β with A shrinks the upper
fringe, we call it a reduction.

Finding Reductions

Consider the simple grammar

And the input string abbcde

The trick is scanning the input and finding the next reduction

The mechanism for doing this must be efficient

Finding Reductions
The parser must find a substring β of the tree’s frontier that
matches some production A → β that occurs as one step in
the rightmost derivation

Informally, we call this substring β a handle

Formally,

A handle of a right-sentential form γ is a pair <A→β,k>
where A→β ∈ P and k is the position in γ of β’s rightmost
symbol.

If <A→β,k> is a handle, then replacing β at k with A
produces the right sentential form from which γ is derived
in the rightmost derivation.

Because γ is a right-sentential form, the substring to the right
of a handle contains only terminal symbols

⇒ the parser doesn’t need to scan past the handle (very far)

Finding Reductions

Critical Insight: If G is unambiguous, then
every right-sentential form has a unique
handle.

If we can find those handles, we can build a
derivation !

Example

Goal
Expr

Term

Factor

→

→

|

|

→

|

|

→

|

Expr
Expr + Term
Expr - Term
Term
Term * Factor
Term / Factor
Factor
number
id

1
2
3
4
5
6
7
8
9

Handle-pruning
The process of discovering a handle & reducing it to the
appropriate left-hand side is called handle pruning

Handle pruning forms the basis for a bottom-up parsing
method

To construct a rightmost derivation
S⇒γ0 ⇒γ1 ⇒γ2 ⇒... ⇒γn–1 ⇒γn ⇒w

Apply the following simple algorithm

for i ← n to 1 by –1

Find the handle <Ai →βi , ki > in γi

Replace βi with Ai to generate γi–1

This takes 2n steps

Shift-Reduce Parser
push INVALID

token ← next_token()

repeat until (top of stack = Goal and token = EOF)

if the top of the stack is a handle A→β

then // reduce β to A

pop |β| symbols off the stack

push A onto the stack

else if (token ≠ EOF)

then // shift

push token

token ← next_token()

else // need to shift, but out of input

report an error

Example: x - 2 * y

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle & reduce

Goal
Expr

Term

Factor

→

→

|

|

→

|

|

→

|

Expr
Expr + Term
Expr - Term
Term
Term * Factor
Term / Factor
Factor
number
id

1
2
3
4
5
6
7
8
9

Example: x - 2 * y

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle & reduce

Goal
Expr

Term

Factor

→

→

|

|

→

|

|

→

|

Expr
Expr + Term
Expr - Term
Term
Term * Factor
Term / Factor
Factor
number
id

1
2
3
4
5
6
7
8
9

Example: x - 2 * y

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle & reduce

Goal
Expr

Term

Factor

→

→

|

|

→

|

|

→

|

Expr
Expr + Term
Expr - Term
Term
Term * Factor
Term / Factor
Factor
number
id

1
2
3
4
5
6
7
8
9

Example: x - 2 * y

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle & reduce

Goal
Expr

Term

Factor

→

→

|

|

→

|

|

→

|

Expr
Expr + Term
Expr - Term
Term
Term * Factor
Term / Factor
Factor
number
id

1
2
3
4
5
6
7
8
9

Example: x - 2 * y

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle & reduce

Goal
Expr

Term

Factor

→

→

|

|

→

|

|

→

|

Expr
Expr + Term
Expr - Term
Term
Term * Factor
Term / Factor
Factor
number
id

1
2
3
4
5
6
7
8
9

Example: x - 2 * y

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle & reduce

Goal
Expr

Term

Factor

→

→

|

|

→

|

|

→

|

Expr
Expr + Term
Expr - Term
Term
Term * Factor
Term / Factor
Factor
number
id

1
2
3
4
5
6
7
8
9

Example: x - 2 * y
Goal

<id,x>

Term

Fact.

Expr –

Expr

<id,y>

<num,2>

Fact.

Fact.Term

Term

*

Shift-Reduce Parsing

Shift reduce parsers are easily built and easily understood

A shift-reduce parser has just four actions

Shift — next word is shifted onto the stack

Reduce — right end of handle is at top of stack

Locate left end of handle within the stack

Pop handle off stack & push appropriate LHS

Accept — stop parsing & report success

Error — call an error reporting/recovery routine

Accept & Error are simple

Shift is just a push and a call to the scanner

Reduce takes |RHS| pops & 1 push

If handle-finding requires state, put it in the stack ⇒ 2x work

Finding Handles

Critical Question: How can we know when we
have found a handle without generating lots
of different derivations?

Answer: we use look ahead in the
grammar along with tables produced as
the result of analysing the grammar.

LR(1) parsers build a DFA that runs over
the stack & finds them

LR(1) Parsers
LR(1) parsers are table-driven, shift-reduce parsers that use
a limited right context (1 token) for handle recognition

LR(1) parsers recognise languages that have an LR(1)
grammar

Informal definition:

A grammar is LR(1) if, given a rightmost derivation
S⇒γ0 ⇒γ1 ⇒γ2 ⇒... ⇒γn–1 ⇒γn ⇒sentence

We can

1. isolate the handle of each right-sentential form γi, and

2. determine the production by which to reduce,

by scanning γi from left-to-right, going at most 1 symbol beyond
the right end of the handle of γi

LR(1) Parsers

LR(1) Skeleton Parser
stack.push(INVALID); stack.push(s0);
not_found = true;
token = scanner.next_token();
do while (not_found) {
 s = stack.top();
 if (ACTION[s,token] == “reduce A”) then {

stack.popnum(2*||); // pop 2*|| symbols
 s = stack.top();
 stack.push(A);
 stack.push(GOTO[s,A]);

}
 else if (ACTION[s,token] == “shift si”) then {

stack.push(token); stack.push(si);
token  scanner.next_token();

}
 else if (ACTION[s,token] == “accept”

 & token == EOF)
then not_found = false;

else report a syntax error and recover;
}
report success;

The skeleton parser

•uses ACTION & GOTO tables

•does |words| shifts

•does |derivation| reductions

•does 1 accept

•detects errors by failure of 3
other cases

LR(1) Parse Tables
To make a parser for L(G),
need a set of tables

The grammar

The tables

Goal
SheepNoise

→

→

|

SheepNoise
SheepNoise baa
baa

1
2
3

State

s0
s1
s2
s3

EOF

-
accept

reduce 3
reduce 2

baa

shift s2
shift s3

reduce 3
reduce 2

State

s0
s1
s2
s3

SN

s1

GOTOACTION

LR(1) Parse Tables
To make a parser for L(G),
need a set of tables

The grammar

The tables

Goal
SheepNoise

→

→

|

SheepNoise
SheepNoise baa
baa

1
2
3

State

s0
s1
s2
s3

EOF

-
accept

reduce 3
reduce 2

baa

shift s2
shift s3

reduce 3
reduce 2

State

s0
s1
s2
s3

SN

s1

GOTOACTION

Example: “baa”

s0
s0 baa s2
s0 SN s1

baa EOF
EOF
EOF

shift s2
reduce 3
accept

STACK INPUT ACTION

LR(1) Parse Tables
Example: “baa baa”

s0
s0 baa s2
s0 SN s1
s0 SN s1 baa s3
s0 SN s1

baa baa EOF
baa EOF
baa EOF
EOF
EOF

shift s2
reduce 3
shift s3
reduce 2
accept

STACK INPUT ACTION

To make a parser for L(G),
need a set of tables

The grammar

The tables

Goal
SheepNoise

→

→

|

SheepNoise
SheepNoise baa
baa

1
2
3

State

s0
s1
s2
s3

EOF

-
accept

reduce 3
reduce 2

baa

shift s2
shift s3

reduce 3
reduce 2

State

s0
s1
s2
s3

SN

s1

GOTOACTION

LR(1) Parse Tables

State

s0
s1
s2
s3

EOF

-
accept

reduce 3
reduce 2

baa

shift s2
shift s3

reduce 3
reduce 2

State

s0
s1
s2
s3

SN

s1

GOTOACTION

Example: “baa baa”

s0
s0 baa s2
s0 SN s1
s0 SN s1 baa s3
s0 SN s1

baa baa EOF
baa EOF
baa EOF
EOF
EOF

shift s2
reduce 3
shift s3
reduce 2
accept

STACK INPUT ACTION

Goal
SheepNoise

→

→

|

SheepNoise
SheepNoise baa
baa

1
2
3

Parse Tables

The process of creating the parse tables can
be automated

More details in the book (EaC)

Beyond Syntax

Preview

Context-Sensitive Analysis

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

