Parsing III
(Top-down parsing: recursive descent & LL(1))
We set out to study parsing

- Specifying syntax
 - Context-free grammars
 - Ambiguity

- Top-down parsers
 - Algorithm & its problem with left recursion
 - Left-recursion removal

- Predictive top-down parsing
 - The LL(1) condition
 - Simple recursive descent parsers
 - Table-driven LL(1) parsers
Picking the “Right” Production

If it picks the wrong production, a top-down parser may backtrack

Alternative is to look ahead in input & use context to pick correctly

How much lookahead is needed?
- In general, an arbitrarily large amount
- Use the Cocke-Younger, Kasami (CYK) algorithm or Earley’s algorithm

Fortunately,
- Large subclasses of CFGs can be parsed with limited lookahead
- Most programming language constructs fall in those subclasses

Among the interesting subclasses are $LL(1)$ and $LR(1)$ grammars
Predictive Parsing

Basic idea

Given $A \rightarrow \alpha \mid \beta$, the parser should be able to choose between α & β

FIRST sets

For some rhs $\alpha \in G$, define $\text{FIRST}(\alpha)$ as the set of tokens that appear as the first symbol in some string that derives from α

That is, $x \in \text{FIRST}(\alpha)$ iff $\alpha \Rightarrow^* x \gamma$, for some γ

We will defer the problem of how to compute FIRST sets until we look at the $LR(1)$ table construction algorithm
Predictive Parsing

Basic idea
Given $A \rightarrow \alpha | \beta$, the parser should be able to choose between α & β

FIRST sets
For some rhs $\alpha \in G$, define $\text{FIRST}(\alpha)$ as the set of tokens that appear as the first symbol in some string that derives from α
That is, $x \in \text{FIRST}(\alpha)$ iff $\alpha \Rightarrow^* x \gamma$, for some γ

The LL(1) Property
If $A \rightarrow \alpha$ and $A \rightarrow \beta$ both appear in the grammar, we would like
$$\text{FIRST}(\alpha) \cap \text{FIRST}(\beta) = \emptyset$$
This would allow the parser to make a correct choice with a lookahead of exactly one symbol!

This is almost correct
See the next slide
Predictive Parsing

What about \(\varepsilon \)-productions?

⇒ They complicate the definition of LL(1)

If \(A \to \alpha \) and \(A \to \beta \) and \(\varepsilon \in \text{FIRST}(\alpha) \), then we need to ensure that \(\text{FIRST}(\beta) \) is disjoint from \(\text{FOLLOW}(\alpha) \), too.

Define \(\text{FIRST}^+(\alpha) \) as

- \(\text{FIRST}(\alpha) \cup \text{FOLLOW}(\alpha) \), if \(\varepsilon \in \text{FIRST}(\alpha) \)
- \(\text{FIRST}(\alpha) \), otherwise

Then, a grammar is LL(1) iff \(A \to \alpha \) and \(A \to \beta \) implies

\[
\text{FIRST}^+(\alpha) \cap \text{FIRST}^+(\beta) = \emptyset
\]

\(\text{FOLLOW}(\alpha) \) is the set of all words in the grammar that can legally appear immediately after an \(\alpha \).
FIRST and FOLLOW Sets

FIRST(α)
For some $\alpha \in T \cup NT$, define $\text{FIRST}(\alpha)$ as the set of tokens that appear as the first symbol in some string that derives from α.

That is, $x \in \text{FIRST}(\alpha)$ iff $\alpha \Rightarrow^* x \gamma$, for some γ.

FOLLOW(α)
For some $\alpha \in NT$, define $\text{FOLLOW}(\alpha)$ as the set of symbols that can occur immediately after α in a valid sentence.

$\text{FOLLOW}(S) = \{\text{EOF}\}$, where S is the start symbol.

To build FOLLOW sets, we need FIRST sets ...
Computing FOLLOW Sets

\[
\text{FOLLOW}(S) \leftarrow \{\text{EOF}\}
\]

for each \(A \in NT \), \(\text{FOLLOW}(A) \leftarrow \emptyset \)

while (FOLLOW sets are still changing)

for each \(p \in P \), of the form \(A \rightarrow \beta_1 \beta_2 \ldots \beta_k \)

\[
\text{FOLLOW}(\beta_k) \leftarrow \text{FOLLOW}(\beta_k) \cup \text{FOLLOW}(A)
\]

\[
\text{TRAILER} \leftarrow \text{FOLLOW}(A)
\]

for \(i \leftarrow k \) down to 2

if \(\varepsilon \in \text{FIRST}(\beta_i) \) then

\[
\text{FOLLOW}(\beta_{i-1}) \leftarrow \text{FOLLOW}(\beta_{i-1}) \cup \{ \text{FIRST}(\beta_i) - \{ \varepsilon \} \}
\]

\[
\cup \text{TRAILER}
\]

else

\[
\text{FOLLOW}(\beta_{i-1}) \leftarrow \text{FOLLOW}(\beta_{i-1}) \cup \text{FIRST}(\beta_i)
\]

\[
\text{TRAILER} \leftarrow \emptyset
\]
Computing FIRST Sets

for each $\alpha \in (T \cup \varepsilon)$
\[\text{FIRST}(\alpha) \leftarrow \alpha \]

for each $A \in \text{NT}$
\[\text{FIRST}(A) \leftarrow \emptyset \]

while (FIRST sets are still changing)

for each $p \in P$, where p has the form $A \rightarrow \beta$
if β is $\beta_1 \beta_2 \ldots \beta_k$, where $\beta_i \in T \cup \text{NT}$, then
\[\text{FIRST}(A) \leftarrow \text{FIRST}(A) \cup (\text{FIRST}(\beta_1) - \{\varepsilon\}) \]

$i \leftarrow 1$
while ($\varepsilon \in \text{FIRST}(\beta_i)$ and $i < k$)
\[\text{FIRST}(A) \leftarrow \text{FIRST}(A) \cup (\text{FIRST}(\beta_{i+1}) - \{\varepsilon\}) \]

$i \leftarrow i+1$
if $i = k$ and $\varepsilon \in \text{FIRST}(\beta_k)$, then
\[\text{FIRST}(A) \leftarrow \text{FIRST}(A) \cup \{\varepsilon\} \]
Predictive Parsing

Given a grammar that has the $LL(1)$ property

- Can write a simple routine to recognize each lhs
- Code is both simple & fast

Consider $A \rightarrow \beta_1 \mid \beta_2 \mid \beta_3$, with

$\text{FIRST}^+(\beta_1) \cap \text{FIRST}^+(\beta_2) \cap \text{FIRST}^+(\beta_3) = \emptyset$

/* find an A */
if (current_word \in FIRST(β_1))
 find a β_1 and return true
else if (current_word \in FIRST(β_2))
 find a β_2 and return true
else if (current_word \in FIRST(β_3))
 find a β_3 and return true
else
 report an error and return false

Grammars with the $LL(1)$ property are called **predictive grammars** because the parser can “predict” the correct expansion at each point in the parse.

Parsers that capitalize on the $LL(1)$ property are called **predictive parsers**.

One kind of predictive parser is the **recursive descent** parser.

Of course, there is more detail to “find a β_i” (§ 3.3.4 in EAC)
Recall the expression grammar, after transformation

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Goal</td>
<td>\rightarrow</td>
<td>Expr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Expr</td>
<td>\rightarrow</td>
<td>Term Expr'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Expr'</td>
<td>\rightarrow</td>
<td>+ Term Expr'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$</td>
<td>$</td>
<td>- Term Expr'</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ε</td>
</tr>
<tr>
<td>4</td>
<td>Term</td>
<td>\rightarrow</td>
<td>Factor Term'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Term'</td>
<td>\rightarrow</td>
<td>* Factor Term'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$</td>
<td>$</td>
<td>/ Factor Term'</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ε</td>
</tr>
<tr>
<td>6</td>
<td>Factor</td>
<td>\rightarrow</td>
<td>number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>$</td>
<td>$</td>
<td>id</td>
<td></td>
</tr>
</tbody>
</table>

This produces a parser with six *mutually recursive* routines:

- Goal
- Expr
- Expr'
- Term
- Term'
- Factor

Each recognizes one NT or T

The term *descent* refers to the direction in which the parse tree is built.
Recursive Descent Parsing (Procedural)

A couple of routines from the expression parser

Goal()
\[
\text{token} \leftarrow \text{next_token()}; \\
\text{if } (\text{Expr()} = \text{true} \& \text{token} = \text{EOF}) \\
\text{then next compilation step;} \\
\text{else} \\
\quad \text{report syntax error;} \\
\quad \text{return false;}
\]

Expr()
\[
\text{if } (\text{Term()} = \text{false}) \\
\text{then return false;} \\
\text{else return Eprime();}
\]

Factor()
\[
\text{if } (\text{token} = \text{Number}) \text{ then} \\
\text{token} \leftarrow \text{next_token()}; \\
\text{return true;} \\
\text{else if } (\text{token} = \text{Identifier}) \text{ then} \\
\text{token} \leftarrow \text{next_token()}; \\
\text{return true;} \\
\text{else} \\
\quad \text{report syntax error;} \\
\quad \text{return false;}
\]

EPrime, Term, & TPrime follow the same basic lines (Figure 3.7, EAC)

looking for Number or Identifier, found token instead
Recursive Descent Parsing

To build a parse tree:
- Augment parsing routines to build nodes
- Pass nodes between routines using a stack
- Node for each symbol on rhs
- Action is to pop rhs nodes, make them children of lhs node, and push this subtree

To build an abstract syntax tree
- Build fewer nodes
- Put them together in a different order

```
Expr()
result ← true;
if (Term() = false)
    then return false;
else if (EPrime() = false)
    then result ← false;
else
    build an Expr node
    pop EPrime node
    pop Term node
    make EPrime & Term children of Expr
    push Expr node
return result;
```

Success ⇒ build a piece of the parse tree
Left Factoring

What if my grammar does not have the LL(1) property?
⇒ Sometimes, we can transform the grammar

The Algorithm

\[\forall A \in \text{NT}, \]
find the longest prefix \(\alpha \) that occurs in two or more right-hand sides of \(A \)

if \(\alpha \neq \varepsilon \) then replace all of the \(A \) productions,
\[A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid \ldots \mid \alpha \beta_n \mid \gamma, \]

with
\[A \rightarrow \alpha \ Z \mid \gamma \]
\[Z \rightarrow \beta_1 \mid \beta_2 \mid \ldots \mid \beta_n \]

where \(Z \) is a new element of NT

Repeat until no common prefixes remain
Left Factoring

A graphical explanation for the same idea

\[A \rightarrow \alpha \beta_1 \]
\[| \alpha \beta_2 \]
\[| \alpha \beta_3 \]

becomes ...

\[A \rightarrow \alpha Z \]
\[Z \rightarrow \beta_1 \]
\[| \beta_2 \]
\[| \beta_n \]
Left Factoring
(An example)

Consider the following fragment of the expression grammar

<table>
<thead>
<tr>
<th></th>
<th>Factor</th>
<th>FIRST(rhs<sub>1</sub>) = { Identifier }</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Identifier</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Identifier [ExprList]</td>
<td>FIRST(rhs<sub>2</sub>) = { Identifier }</td>
</tr>
<tr>
<td>3</td>
<td>Identifier (ExprList)</td>
<td>FIRST(rhs<sub>3</sub>) = { Identifier }</td>
</tr>
</tbody>
</table>

After left factoring, it becomes

<table>
<thead>
<tr>
<th></th>
<th>Factor</th>
<th>FIRST(rhs<sub>1</sub>) = { Identifier }</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Identifier Arguments</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Arguments [ExprList]</td>
<td>FIRST(rhs<sub>2</sub>) = { }</td>
</tr>
<tr>
<td>3</td>
<td>(ExprList)</td>
<td>FIRST(rhs<sub>3</sub>) = { }</td>
</tr>
<tr>
<td>4</td>
<td>ε</td>
<td>FOLLOW(Factor)</td>
</tr>
</tbody>
</table>

\[\Rightarrow \text{It has the } LL(1) \text{ property} \]

This form has the same syntax, with the \textit{LL(1)} property.
Graphically becomes ...

No basis for choice

Word determines correct choice
Question

By eliminating left recursion and left factoring, can we transform an arbitrary CFG to a form where it meets the $LL(1)$ condition? (and can be parsed predictively with a single token lookahead?)

Answer

Given a CFG that doesn’t meet the $LL(1)$ condition, it is undecidable whether or not an equivalent $LL(1)$ grammar exists.

Example

\{a^n 0 b^n \mid n \geq 1\} \cup \{a^n 1 b^{2n} \mid n \geq 1\} has no $LL(1)$ grammar
Language that Cannot Be LL(1)

Example

\{a^n 0 b^n \mid n \geq 1\} \cup \{a^n 1 b^{2n} \mid n \geq 1\} \text{ has no } LL(1) \text{ grammar}

\begin{align*}
G & \to aAb \\
& \quad \mid aBbb \\
A & \to aAb \\
& \quad \mid 0 \\
B & \to aBbb \\
& \quad \mid 1 \\
\end{align*}

Problem: need an unbounded number of a characters before you can determine whether you are in the A group or the B group.
Recursive Descent (Summary)

1. Build FIRST (and FOLLOW) sets
2. Massage grammar to have $LL(1)$ condition
 a. Remove left recursion
 b. Left factor it
3. Define a procedure for each non-terminal
 a. Implement a case for each right-hand side
 b. Call procedures as needed for non-terminals
4. Add extra code, as needed
 a. Perform context-sensitive checking
 b. Build an IR to record the code

Can we automate this process?
Building Top-down Parsers

Given an $LL(1)$ grammar, and its FIRST & FOLLOW sets ...

- Emit a routine for each non-terminal
 - Nest of if-then-else statements to check alternate rhs’s
 - Each returns true on success and throws an error on false
 - Simple, working $(, \textit{perhaps} \textit{ugly},)$ code

- This automatically constructs a recursive-descent parser

Improving matters

- Nest of if-then-else statements may be slow
 - Good case statement implementation would be better

- What about a table to encode the options?
 - Interpret the table with a skeleton, as we did in scanning
Building Top-down Parsers

Strategy

• Encode knowledge in a table
• Use a standard “skeleton” parser to interpret the table

Example

• The non-terminal \textit{Factor} has three expansions
 \[\rightarrow (Expr) \text{ or } \textit{Identifier} \text{ or } \textit{Number} \]
• Table might look like:

\begin{tabular}{c|c|c|c|c|c|c}
 & + & - & * & / & Id. & Num. & EOF \\
\hline
\textit{Factor} & - & - & - & - & 10 & 11 & - \\
\end{tabular}

Terminal Symbols

Non-terminal Symbols

Error on `+`

Reduce by rule 10 on `+`
Building Top Down Parsers

Building the complete table
• Need a row for every NT & a column for every T
• Need a table-driven interpreter for the table
LL(1) Skeleton Parser

token ← next_token()
push EOF onto Stack
push the start symbol, S, onto Stack
TOS ← top of Stack

loop forever
 if TOS = EOF and token = EOF then
 break & report success
 else if TOS is a terminal then
 if TOS matches token then
 pop Stack // recognized TOS
 token ← next_token()
 else report error looking for TOS
 else
 // TOS is a non-terminal
 if TABLE[TOS,token] is A → B₁B₂...Bₖ then
 pop Stack // get rid of A
 push Bₖ, Bₖ₋₁, ..., B₁ // in that order
 else report error expanding TOS

TOS ← top of Stack
Building Top Down Parsers

Building the complete table

• Need a row for every NT & a column for every T
• Need an algorithm to build the table

Filling in $\text{TABLE}[X,y]$, $X \in NT$, $y \in T$

1. entry is the rule $X \rightarrow \beta$, if $y \in \text{FIRST}(\beta)$
2. entry is the rule $X \rightarrow \varepsilon$ if $y \in \text{FOLLOW}(X)$ and $X \rightarrow \varepsilon \in G$
3. entry is error if neither 1 nor 2 define it

If any entry is defined multiple times, G is not $LL(1)$

This is the $LL(1)$ table construction algorithm
Extra Slides Start Here
Recursive Descent in Object-Oriented Languages

• Shortcomings of Recursive Descent
 → Too procedural
 → No convenient way to build parse tree

• Solution
 → Associate a class with each non-terminal symbol
 ▪ Allocated object contains pointer to the parse tree

Class NonTerminal {

 public:
 NonTerminal(Scanner & scnr) { s = &scnr; tree = NULL; }
 virtual ~NonTerminal() { }
 virtual bool isPresent() = 0;
 TreeNode * abSynTree() { return tree; }

 protected:
 Scanner * s;
 TreeNode * tree;
}
Non-terminal Classes

Class Expr : public NonTerminal {
public:
 Expr(Scanner & scnr) : NonTerminal(scnr) { }
 virtual bool isPresent();
}

Class EPrime : public NonTerminal {
public:
 EPrime(Scanner & scnr, TreeNode * p) :
 NonTerminal(scnr) { exprSofar = p; }
 virtual bool isPresent();
protected:
 TreeNode * exprSofar;
}

... // definitions for Term and TPrime

Class Factor : public NonTerminal {
public:
 Factor(Scanner & scnr) : NonTerminal(scnr) { }
 virtual bool isPresent();
}
bool Expr::isPresent() {
 Term * operand1 = new Term(*s);
 if (!operand1->isPresent()) return FALSE;

 Eprime * operand2 = new EPrime(*s, NULL);
 if (!operand2->isPresent()) // do nothing;

 return TRUE;
}
Implementation of `isPresent`

```cpp
bool EPrime::isPresent() {
    token_type op = s->nextToken();
    if (op == PLUS || op == MINUS) {
        s->advance();

        Term * operand2 = new Term(*s);
        if (!operand2->isPresent()) throw SyntaxError(*s);

        EPrime * operand3 = new EPrime(*s, NULL);
        if (operand3->isPresent()); //do nothing

        return TRUE;
    }
    else return FALSE;
}
```
bool Expr::isPresent() { // with semantic processing

 Term * operand1 = new Term(*s);
 if (!operand1->isPresent()) return FALSE;
 tree = operand1->abSynTree();

 EPrime * operand2 = new EPrime(*s, tree);
 if (operand2->isPresent())
 tree = operand2->absSynTree();

 // here tree is either the tree for the Term
 // or the tree for Term followed by EPrime
 return TRUE;
}
bool EPrime::isPresent() { // with semantic processing
 token_type op = s->nextToken();
 if (op == PLUS || op == MINUS) {
 s->advance();

 Term * operand2 = new Term(*s);
 if (!operand2->isPresent()) throw SyntaxError(*s);

 TreeNode * t2 = operand2->absSynTree();
 tree = new TreeNode(op, exprSofar, t2);

 Eprime * operand3 = new Eprime(*s, tree);
 if (operand3->isPresent())
 tree = operand3->absSynTree();
 return TRUE;
 }
 else return FALSE;
}
bool Factor::isPresent() { // with semantic processing
 token_type op = s->nextToken();

 if (op == IDENTIFIER | op == NUMBER) {
 tree = new TreeNode(op, s->tokenValue());
 s->advance();
 return TRUE;
 } else if (op == LPAREN) {
 s->advance();
 Expr * operand = new Expr(*s);
 if (!operand->isPresent()) throw SyntaxError(*s);
 if (s->nextToken() != RPAREN) throw SyntaxError(*s);
 s->advance();
 tree = operand->absSynTree();
 return TRUE;
 } else return FALSE;
}