Compiling Techniques
Lecture 4: Constructing a Scanner from Regular Expressions

Christophe Dubach
Overview

- Regular Expressions to NFAs
- NFAs to DFAs
- Minimisation of DFAs
- Limits of Regular Languages
Quick Review

- Previous class:
 - The scanner is the first stage in the front end
 - Specifications can be expressed using regular expressions
 - Build tables and code from a DFA
 - Regular expressions, NFAs and DFAs
Goal

- Construct a finite state automaton to recognise any RE

Overview:
- Direct construction of a nondeterministic finite automaton (NFA) to recognise a given RE
 - Requires ϵ-transitions to combine regular subexpressions
- Construct a deterministic finite automaton (DFA) to simulate the NFA
 - Use a set-of-states construction
- Minimise the number of states
 - Hopcroft state minimisation algorithm
- Generate the scanner code
 - Additional specifications needed for details
RE→NFA

Key idea:
× NFA pattern for each symbol & each operator
× Join them with ε moves in precedence order
Example

1. $a, b, \& c$

2. $b | c$

3. $(b | c)^*$
Example continued

\[a(b | c)^* \]

\[
\begin{array}{c}
S_0 \xrightarrow{a} S_1 \xrightarrow{\varepsilon} S_2 \xrightarrow{\varepsilon} S_3 \\
S_4 \xrightarrow{\varepsilon} S_5 \xrightarrow{\varepsilon} S_6 \xrightarrow{c} S_7 \xrightarrow{\varepsilon} S_8 \\
S_9
\end{array}
\]

Of course, a human would design something simpler ...

But, we can automate production of the more complex one ...
NFA → DFA (Subset Constr.)

- Need to build a simulation of the NFA

- Two key functions
 - \(\text{Move}(s_i, a) \) is set of states reachable from \(s_i \) by \(a \)
 - \(\varepsilon\)-closure\((s_i) \) is set of states reachable from \(s_i \) by \(\varepsilon \)

- The algorithm:
 - Start state derived from \(s_0 \) of the NFA
 - Take its \(\varepsilon\)-closure \(S_0 = \varepsilon\)-closure\((s_0) \)
 - Take the image of \(S_0 \), \(\text{Move}(S_0, \alpha) \) for each \(\alpha \in \Sigma \), and take its \(\varepsilon\)-closure
 - Iterate until no more states are added
NFA→DFA (Subset Constr.)

The algorithm:

\[s_0 \leftarrow \varepsilon\text{-closure}(q_{0n}) \]

while (S is still changing)

for each \(s_i \in S \)

for each \(\alpha \in \Sigma \)

\[s_? \leftarrow \varepsilon\text{-closure}(\text{Move}(s, \alpha)) \]

if (\(s_? \notin S \)) then

\(s_? \) to \(S \) as \(s_j \)

\[T[s, \alpha] \leftarrow s_j \]

Let's think about why this works

The algorithm halts:

1. \(S \) contains no duplicates (test before adding)
2. \(2^{Q_0} \) is finite
3. while loop adds to \(S \), but does not remove from \(S \) (monotone)

\[\Rightarrow \text{the loop halts} \]

\(S \) contains all the reachable NFA states

It tries each character in each \(s_r \)

It builds every possible NFA configuration.

\[\Rightarrow S \text{ and } T \text{ form the DFA} \]
Example of a fixed-point computation
- Monotone construction of some finite set
- Halts when it stops adding to the set
- Proofs of halting & correctness are similar
- These computations arise in many contexts

Other fixed-point computations
- Canonical construction of sets of LR(1) items
 - Quite similar to the subset construction
- Classic data-flow analysis (& Gaussian Elimination)
 - Solving sets of simultaneous set equations
NFA→DFA (Subset Constr.)

Applying the subset construction:

<table>
<thead>
<tr>
<th></th>
<th>NFA states</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>s₀</td>
<td>q₀</td>
<td>q₁, q₂, q₃, q₄, q₅, q₆, q₉</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>s₁</td>
<td>q₁, q₂, q₃, q₄, q₅, q₆, q₉</td>
<td>none</td>
<td>q₅, q₈, q₉, q₃, q₄, q₆</td>
</tr>
<tr>
<td></td>
<td>s₂</td>
<td>q₅, q₈, q₉, q₃, q₄, q₆</td>
<td>none</td>
<td>s₂</td>
</tr>
<tr>
<td></td>
<td>s₃</td>
<td>q₇, q₈, q₉, q₃, q₄, q₆</td>
<td>none</td>
<td>s₂</td>
</tr>
</tbody>
</table>

Final states
- DFA for a (b | c)*
 - Ends up smaller than the NFA
 - All transitions are deterministic
 - Use same code skeleton as before
Where are we?

- **RE → NFA** (Thompson’s construction) \(\checkmark\)
 - Build an NFA for each term
 - Combine them with \(\varepsilon\)-moves
- **NFA → DFA** (subset construction) \(\checkmark\)
 - Build the simulation
- **DFA → Minimal DFA**
 - Hopcroft’s algorithm
DFA Minimisation

- The Big Picture
- Discover sets of equivalent states
- Represent each such set with just one state
DFA Minimisation

Two states are equivalent if and only if:

- The set of paths leading to them are equivalent
- $\forall \alpha \in \Sigma$, transitions on α lead to equivalent states (DFA)
- α-transitions to distinct sets \Rightarrow states must be in distinct sets
DFA Minimisation

- A partition P of S
 - Each $s \in S$ is in exactly one set $p_i \in P$
 - The algorithm iteratively partitions the DFA’s states
DFA Minimisation

- Key idea of the algorithm
 - Group states into maximal size sets, optimistically
 - Iteratively subdivide those sets, as needed
 - States that remain grouped together are equivalent
DFA Minimisation

- Initial partition, P_0, has two sets:
 - $\{F\}$ & $\{Q-F\}$ ($D = (Q, \Sigma, \delta, q_0, F)$)

- Splitting a set (“partitioning a set by a”)
 - Assume $q_a \in s$, and $\delta(q_a, a) = q_x$ & $\delta(q_b, a) = q_y$
 - If q_x & q_y are not in the same set, then s must be split
 - one state in the final DFA cannot have two transitions on a
 - If q_a has transition on a and q_b does not \Rightarrow a splits $s
DFA Minimisation

The algorithm

- \(P \leftarrow \{ F, \{Q-F\}\} \)
- while (\(P \) is still changing)
 - \(T \leftarrow \{ \} \)
 - for each set \(S \in P \)
 - for each \(\alpha \in \Sigma \)
 - partition \(S \) by \(\alpha \)
 - into \(S_1 \) and \(S_2 \)
 - \(T \leftarrow T \cup S_1 \cup S_2 \)
 - if \(T \neq P \) then
 - \(P \leftarrow T \)

Why does this work?

- Partition \(P \in 2^Q \)
- Start off with 2 subsets of \(Q \)
 - \(\{F\} \) and \(\{Q-F\} \)
- While loop takes \(P_i \rightarrow P_{i+1} \) by
 - splitting 1 or more sets
- \(P_{i+1} \) is at least one step closer
 - to the partition with \(|Q| \) sets
- Maximum of \(|Q| \) splits

Note that

- Partitions are never combined
- Initial partition ensures that
 - final states are intact

This is a fixed-point algorithm!
DFA Minimisation

- Refining the algorithm
 - As written, it examines every $S \in P$ on each iteration
 - This does a lot of unnecessary work
 - Only examine S if some T, reachable from S, has split

- Reformulate the algorithm using a “worklist”
 - Start worklist with initial partition, F and $\{Q-F\}$
 - When it splits S into S_1 and S_2, place S_2 on worklist

- This version looks at each $S \in P$ many fewer times ⇒ Well-known, widely used algorithm due to John Hopcroft
Example RE to Min-DFA

Start with a regular expression

```
| r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9 |
```
Example RE to Min-DFA

Thompson’s construction produces

To make it fit, we’ve eliminated the \(\varepsilon \)-transition between “r” and “0”.
Example RE to Min-DFA

The subset construction builds

This is a DFA, but it has a lot of states ...
Example RE to Min-DFA

The DFA minimization algorithm builds

This looks like what a skilled compiler writer would do!
Limits of Regular Languages

* Advantages of Regular Expressions
 * Simple & powerful notation for specifying patterns
 * Automatic construction of fast recognisers
 * Many kinds of syntax can be specified with REs
Limits of Regular Languages

- Not all languages are regular RL’s ⊂ CFL’s ⊂ CSL’s
 (R=regular, CF=context-free, CS=context-sensitive)

- Cannot construct DFA’s to recognise:
 - L= \{wcw | w \in \Sigma^*\}
 - This is not a regular language (cannot be expressed with RE)

- But, this is a little subtle. You can construct DFA’s for
 - Strings with alternating 0’s and 1’s: (\epsilon | 1) (01)^* (\epsilon | 0)
 - Strings with even number of 0’s or 1’s
What can be so hard?

Poor language design can complicate scanning

- Reserved words are important
 if then then then = else; else else = then (PL/I)

- Insignificant blanks
 do 10 i = 1,25 DO 10 I = 1,25 (LOOP)
do 10 i = 1.25 DO10I = 1.25 (ASSIGNMENT)

- String constants with special characters
 newline, tab, quote, comment delimiters, ...
 (C, C++, Java, ...)

- Finite closures
 → Limited identifier length
 → Adds states to count length
 (Fortran 66 & Basic)
Building Scanners

- **The point**
 - All this technology lets us automate scanner construction
 - Implementer writes down the regular expressions
 - Scanner generator builds NFA, DFA, minimal DFA, and then writes out the (table-driven or direct-coded) code
 - This reliably produces fast, robust scanners

- **For most modern language features, this works**
 - You should think twice before introducing a feature that defeats a DFA-based scanner
 - The ones we’ve seen (e.g., insignificant blanks, non-reserved keywords) have not proven particularly useful or long lasting
Preview

- Context-Free Grammars
- Introduction to Parsing