Compiling Technigues

Lecture 3: Introduction to Lexical Analysis

Overview

* Tutorials

* The Big Picture

* Regular Expressions
* DFAs and NFAs

* Automating Scanner Construction

*

Tutorials

Monday 1:10pm - AT 4.07 (Christophe Dubach)
Monday 1:10pm - AT 4.14A (Bjorn Franke)
Thursday 1:10pm - AT 4.07 (Christophe Dubach)

Tutorials start next week
Group allocation on course website
Online Forum: https://piazza.com/

* action: enrol today!

https://piazza.com/

Scanner

Source

o006 Scanner

¥

tokens

Parser

IR

* Errors

Maps character stream into words—the basic unit of syntax
Produces pairs — a word & its part of speech

* xX=X+Y; becomes<id,x>=<id,x>+<id,y>;
* word = lexeme, part of speech = token type
* |n casual speech, we call the pair a token
Typical tokens include number, identifier, +, -, new, while, if
Scanner eliminates white space (including comments)

Speed is important

The Big Picture

* \Why study lexical analysis?
* \We want to avoid writing scanners by hand
* \We want to harness the theory from other classes
* Goals:
* To simplify specification & implementation of scanners

* To understand the underlying techniques and
technologies

The Big Picture

source code parts of speech & words
- Scanner I
% e — | tables or \ :
code Represent
specifications . Scanner words as
Generator . 4 :
indices intfo a
| global table

1 Specifications written as
"regular expressions”

Reqgular Expressions

* Lexical patterns form a regular language
* Any finite language is regular
* Regular expressions (REs) describe regular languages

* Regular Expression (over alphabet Z)
* € is a RE denoting the set {&g}
* Ifaisin 2, then a is a RE denoting {a}
* |f x and y are REs denoting L(x) and L(y) then
* x|y is an RE denoting L(x) u L(y)
* Xy is an RE denoting L(x)L(y)
* x*is an RE denoting L(x)*

* Precedence is closure, then concatenation, then alternation

Set Operations

Operation Definition

Union of L and M

_ LuM={s|seLorse M}
Written L M

Concatenationof L and | [p1 =t(st|s=Landte M)}

%]
Whitten LM
Kleene closure of L . _ i
; L =Upsi<= L
Written L ’
Positive Closure of L N

Weritten L*

Example

Identifiers:
Letter — (alblel ... 1z|AIBIC] ... |Z)
Digit — (0]1]2] ... |9)

Identifier — Letter(Letter | Digit)

Numbers:

Integer — (x|-|€) (Q] (112[3] .. 19)(Digit"))
Decimal — Integer . Digit”

Real — (Integer | Decimal) E (+|-|€) Digit~
Complex — (Real , Real)

NUMBERS CAN GET MORE COMPLICATED!

Scanners &
Reqgular Expressions

Reqular expressions can be used to specify the words to
be translated to parts of speech by a lexical analyser

Using results from automata theory and theory of
algorithms, we can automatically build recognisers from
reqgular expressions

* Some of you may have seen this construction for string
pattern matching

We study REs and associated theory to automate
scannher construction!

Example

* Consider the problem of recognising register names
* Register - r (0}112] ... | 9) (011}2] ... | 9)*
* Allows registers of arbitrary number
* Requires at least one digit
RE corresponds to a recogniser (or DFA, Deterministic Finite Automaton)

r (01121 ... 9)

Recognizer for Register

(Qi2f ... 9)

accepting state

Transitions on other inputs go to an error state, s,

Example (continued)

* DFA operation
* Start in state sO & take transitions on each input character
* DFA accepts a word x iff x leaves it in a final state (s2)
* - 50,
* rl7 takes it through s0O, sl1, s2 and accepts
* r takes it through s0O, s1 and fails
* a takes it straight to failure

Example (continued)

* To be useful, recogniser must turn into code

Char < next character
State < s,

while (Char = EQF) So 54 s, s,
State < 8(State,Char)

Char < next character g Se 52 S
if (State is a final state) s, s, s, s,

then report success

else report failure S, Se Se Se

Skeleton recognizer Table encoding RE

Example (continued)

* To be useful, recogniser must turn into code

E]:;: *= hext character S r |5,6,789 | others
e s,
s S s s
while (Char » EOF) E st Irr en: r er: r
State < 8(State,Char) = = 0
perform specified action ol Se Sz Se
Char < next character error| add error
if (State is a final state) 52 % sz e
then report success error) ¢ error
else report failure Se 5e Se Se
error| error | error

Skeleton recognizer Table encoding RE

Extended Example

What if we need a tighter specification?

r Digit Digit* allows arbitrary numbers

* Accepts rO0000

* Accepts r99999

* What if we want to limit it to rO through r317?
Write a tighter regular expression

* Register -» r ((0]1|2) (Digit | €) | (4/5]6]|7]8]9) | (3|30|31))
* Register - rO|rljr2| ... |[r31|r00|r01{r02] ... |r09
Produces a more complex DFA

* Has more states

* Same cost per transition

* Same basic implementation

Extended Example
(continued)

* The DFA for Register —» r ((0]1|2) (Digit | €) | (4|5]|6]7]8|9) | (3|30|31))

©112] ... 9)

—O)
——E

426,788

0,1,

* Accepts a more constrained set of registers
* Same set of actions, more states

Extended Example
(continued)

RUNS IN THE
SAME SKELETON
RECOGNISER!

Table encoding RE for the tighter register specification

Goal

We will show how to construct a finite state automaton to recognise
any RE

Overview:

* Direct construction of a nondeterministic finite automaton
(NFA) to recognise a given RE

* Requires e-transitions to combine regular subexpressions

* Construct a deterministic finite automaton (DFA) to simulate
the NFA

* Use a set-of-states construction
* Minimise the number of states
* Hopcroft state minimisation algorithm
* Generate the scanner code
* Additional specifications needed for details

Non-Deterministic
Finite Automata

* Each RE corresponds to a deterministic finite automaton (DFA)
* May be hard to directly construct the right DFA
* What about an RE such as (a|b)*abb?

alb

OREoENOENGENG
Sy 3 3; S5 9

* This Is a little different
* SO has a transition on €
* S1 has two transitions on a

* This is a non-deterministic finite automaton (NFA)

Non-Deterministic
Finite Automata

* An NFA accepts a string x iff 4 a path though the transition graph
from sO to a final state such that the edge labels spell x

* Transitions on € consume no input

* To “run” the NFA, start in sO and guess the right transition at each
step

* Always guess correctly

* |f some sequence of correct guesses accepts x then accept
* \Why study NFAs?

* They are the key to automating the RE-»DFA construction

* \We can paste together NFAs with e-transitions

Relationship between
NFAs and DFAs

* DFA is a special case of an NFA
* DFA has no € transitions
* DFA’s transition function is single-valued
* Same rules will work
* DFA can be simulated with an NFA
* Obviously
* NFA can be simulated with a DFA
* |ess obvious
* Simulate sets of possible states
* Possible exponential blowup in the state space
* Still, one state per character in the input stream

Automating Scanner
Construction

* To convert a specification into code:
1. Write down the RE for the input language
2. Build a big NFA
3. Build the DFA that simulates the NFA
.. Systematically shrink the DFA
s. furn it into code
* Scanner generators
* |Lex and Flex work along these lines
* Algorithms are well-known and well-understood
* Key Issue Is interface to parser (define all parts of speech)
* You could build one in a weekend!

Automating Scanner
Construction

RE— NFA (Thompson’s construction)

: The Cycle of Constructions
* Build an NFA for each term
* Combine them with e-moves
NFA — DFA (subset construction) .
minimal

* Build the simulation *+RE —*NFA —DFA —* ppa——
DFA —» Minimal DFA

* Hopcroft's algorithm

DFA -»RE (Not part of the scanner construction)

* All pairs, all paths problem

Preview

* Constructing a Scanner from Reqgular Expressions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

