
Compiling Techniques
Lecture 3: Introduction to Lexical Analysis

Christophe Dubach

Overview

Tutorials

The Big Picture

Regular Expressions

DFAs and NFAs

Automating Scanner Construction

Tutorials

Monday 1:10pm - AT 4.07 (Christophe Dubach)
Monday 1:10pm - AT 4.14A (Björn Franke)
Thursday 1:10pm - AT 4.07 (Christophe Dubach)

Tutorials start next week

Group allocation on course website

Online Forum: https://piazza.com/

action: enrol today!

https://piazza.com/

Scanner

Maps character stream into words—the basic unit of syntax

Produces pairs — a word & its part of speech

x=x+y; becomes<id,x>=<id,x>+<id,y>;

word ≅ lexeme, part of speech ≅ token type

In casual speech, we call the pair a token

Typical tokens include number, identifier, +, –, new, while, if

Scanner eliminates white space (including comments)

Speed is important

The Big Picture

Why study lexical analysis?

We want to avoid writing scanners by hand

We want to harness the theory from other classes

Goals:

To simplify specification & implementation of scanners

To understand the underlying techniques and
technologies

The Big Picture

Regular Expressions
Lexical patterns form a regular language

Any finite language is regular

Regular expressions (REs) describe regular languages

Regular Expression (over alphabet Σ)

ε is a RE denoting the set {ε}

If a is in Σ, then a is a RE denoting {a}

If x and y are REs denoting L(x) and L(y) then

x|y is an RE denoting L(x) ∪ L(y)

xy is an RE denoting L(x)L(y)

x* is an RE denoting L(x)*

Precedence is closure, then concatenation, then alternation

Set Operations

Example

NUMBERS CAN GET MORE COMPLICATED!

Scanners &
Regular Expressions
Regular expressions can be used to specify the words to
be translated to parts of speech by a lexical analyser

Using results from automata theory and theory of
algorithms, we can automatically build recognisers from
regular expressions

Some of you may have seen this construction for string
pattern matching

We study REs and associated theory to automate
scanner construction!

Example
Consider the problem of recognising register names

Register → r (0|1|2| ... | 9) (0|1|2| ... | 9)*

Allows registers of arbitrary number

Requires at least one digit

RE corresponds to a recogniser (or DFA, Deterministic Finite Automaton)

Example (continued)

DFA operation

Start in state s0 & take transitions on each input character

DFA accepts a word x iff x leaves it in a final state (s2)

So,

r17 takes it through s0, s1, s2 and accepts

r takes it through s0, s1 and fails

a takes it straight to failure

Example (continued)

To be useful, recogniser must turn into code

Example (continued)

To be useful, recogniser must turn into code

Extended Example
What if we need a tighter specification?

r Digit Digit* allows arbitrary numbers

Accepts r00000

Accepts r99999

What if we want to limit it to r0 through r31?

Write a tighter regular expression

Register → r ((0|1|2) (Digit | ε) | (4|5|6|7|8|9) | (3|30|31))

Register → r0|r1|r2| ... |r31|r00|r01|r02| ... |r09

Produces a more complex DFA

Has more states

Same cost per transition

Same basic implementation

Extended Example
(continued)

The DFA for Register → r ((0|1|2) (Digit | ε) | (4|5|6|7|8|9) | (3|30|31))

Accepts a more constrained set of registers

Same set of actions, more states

Extended Example
(continued)

RUNS IN THE
SAME SKELETON

RECOGNISER!

Goal
We will show how to construct a finite state automaton to recognise
any RE

Overview:

Direct construction of a nondeterministic finite automaton
(NFA) to recognise a given RE

Requires ε-transitions to combine regular subexpressions

Construct a deterministic finite automaton (DFA) to simulate
the NFA

Use a set-of-states construction

Minimise the number of states

Hopcroft state minimisation algorithm

Generate the scanner code

Additional specifications needed for details

Non-Deterministic
Finite Automata
Each RE corresponds to a deterministic finite automaton (DFA)

May be hard to directly construct the right DFA

What about an RE such as (a|b)*abb?

This is a little different

S0 has a transition on ε

S1 has two transitions on a

This is a non-deterministic finite automaton (NFA)

Non-Deterministic
Finite Automata

An NFA accepts a string x iff ∃ a path though the transition graph
from s0 to a final state such that the edge labels spell x

Transitions on ε consume no input

To “run” the NFA, start in s0 and guess the right transition at each
step

Always guess correctly

If some sequence of correct guesses accepts x then accept

Why study NFAs?

They are the key to automating the RE→DFA construction

We can paste together NFAs with ε-transitions

NFA NFA BECOMES NFA

Relationship between
NFAs and DFAs

DFA is a special case of an NFA

DFA has no ε transitions

DFA’s transition function is single-valued

Same rules will work

DFA can be simulated with an NFA

Obviously

NFA can be simulated with a DFA

Less obvious

Simulate sets of possible states

Possible exponential blowup in the state space

Still, one state per character in the input stream

Automating Scanner
Construction
To convert a specification into code:

1. Write down the RE for the input language

2. Build a big NFA

3. Build the DFA that simulates the NFA

4. Systematically shrink the DFA

5. Turn it into code

Scanner generators

Lex and Flex work along these lines

Algorithms are well-known and well-understood

Key issue is interface to parser (define all parts of speech)

You could build one in a weekend!

Automating Scanner
Construction

RE→ NFA (Thompson’s construction)

Build an NFA for each term

Combine them with ε-moves

NFA → DFA (subset construction)

Build the simulation

DFA → Minimal DFA

Hopcroft’s algorithm

DFA →RE (Not part of the scanner construction)

All pairs, all paths problem

Preview

Constructing a Scanner from Regular Expressions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

