
Compiling Techniques
Lecture 2: The View from 35000 Feet

Christophe Dubach



Overview

High-Level View of a Compiler

The Front End

The Back End

The Optimiser



Tutorials

Monday 1:10pm - AT 4.07 (Christophe Dubach)

Monday 1:10pm - AT 4.14A (Björn Franke)

Thursday 1:10pm - AT 4.07 (Christophe Dubach)

Tutorials start in week 2 (next week)

Group allocation on course website



High-Level View of a 
Compiler

Must recognise legal (and illegal) programs 

Must generate correct code 

Must manage storage of all variables (and code) 

Must agree with OS & linker on format for object code

Big step up from assembly language—use higher level notations



Traditional Two-Pass 
Compiler

Use an intermediate representation (IR)

Front end maps legal source code into IR

Back end maps IR into target machine code

Admits multiple front ends & multiple passes

Typically, front end is O(n) or O(n log n),
while back end is NPC (NP-complete)



A Common Fallacy

Can we build n x m compilers with n+m components?

Must encode all language specific knowledge in each front end

Must encode all features in a single IR

Must encode all target specific knowledge in each back end

Limited success in systems with very low-level IRs (e.g. LLVM)



The Front End

Recognise legal (& illegal) programs

Report errors in a useful way

Produce IR & preliminary storage map

Shape the code for the back end

Much of front end construction can be automated



Scanner / Lexer

Lexical analysis

Recognises words in a character stream

Produces tokens (words) from lexeme

Collect identifier information

Typical tokens include number, identifier, +, –, new, while, if

Example:

x=x+y; becomes

IDENTIFIER(x) EQUAL IDENTIFIER(x) PLUS IDENTIFIER(y)

Scanner eliminates white space (including comments)



Parser

Recognises context-free syntax & reports errors

Guides context-sensitive (“semantic”) analysis (type checking)

Builds IR for source program

Hand-coded parsers are fairly easy to build

Most books advocate using automatic parser generators



Context-Free Syntax

Context-free syntax is specified with a grammar

SheepNoise → SheepNoise baa | baa

This grammar defines the set of noises that a sheep makes 
under normal circumstances

It is written in a variant of Backus–Naur Form (BNF)

Formally, a grammar G = (S,N,T,P)

S is the start symbol

N is a set of non-terminal symbols

T is a set of terminal symbols or words

P is a set of productions or rewrite rules (P:N→N∪T)



Simple Expression 
Grammar

This grammar defines simple expressions with addition & 
subtraction over “number” and “id”

This grammar, like many, falls in a class called “context-free 
grammars”, abbreviated CFG



Derivations
Given a CFG, we can derive sentences by repeated substitution

To recognise a valid sentence in some CFG, we reverse this process 
and build up a parse tree



Parse Trees



Abstract Syntax Trees

Compilers often use an abstract syntax tree

This is much more concise

ASTs are one kind of intermediate representation (IR)



The Back End

Translate IR into target machine code

Choose instructions to implement each IR operation

Decide which value to keep in registers

Ensure conformance with system interfaces

Automation has been less successful in the back end



Instruction Selection

Produce fast, compact code

Take advantage of target features such as addressing modes

Usually viewed as a pattern matching problem

ad hoc methods, pattern matching, dynamic programming

Example: madd instruction



Register Allocation

Have each value in a register when it is used

Manage a limited set of resources

Can change instruction choices & insert LOADs & STOREs (spilling)

Optimal allocation is NP-Complete (1 or k registers)
Graph colouring problem

Compilers approximate solutions to NP-Complete problems



Instruction Scheduling

Avoid hardware stalls and interlocks

Use all functional units productively

Can increase lifetime of variables (changing the allocation)

Optimal scheduling is NP-Complete in nearly all cases 

Heuristic techniques are well developed



Traditional Three-
Pass Compiler

Code Improvement (or Optimisation)

Analyses IR and rewrites (or transforms) IR 

Primary goal is to reduce running time of the compiled code

May also improve space, power consumption, ... 

Must preserve “meaning” of the code

Measured by values of named variables 

Subject of UG4 Compiler Optimisation



The Optimiser 

Discover & propagate some constant value

Move a computation to a less frequently executed place

Specialise some computation based on context

Discover a redundant computation & remove it

Remove useless or unreachable code

Encode an idiom in some particularly efficient form



Optimisation of 
Subscript Expressions



Modern Restructuring 
Compiler

Blocking for memory hierarchy and register reuse

Vectorisation

Parallelisation

All based on dependence

Also full and partial inlining

Subject of UG4 Compiler Optimisation



Role of the Run-time 
System
Memory management services

Allocate

In the heap or in an activation record (stack frame)

Deallocate

Collect garbage

Run-time type checking

Error processing

Interface to the operating system

Input and output

Support of parallelism

Parallel thread initiation

Communication and synchronization



Preview

Introduction to Lexical Analysis

Decomposition of the input into a stream of tokens

Construction of scanners from regular expressions


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

