
Instruction Selection:
Tree-pattern matching

Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.

EaC­11.3

The Concept

Many compilers use tree-structured IRs
• Abstract syntax trees generated in the parser
• Trees or DAGs for expressions
These systems might well use trees to represent target ISA

Consider the ILOC add operators

If we can match these “pattern trees” against IR trees, …

+

ri rj

add ri,rj  rk

+

ri cj

addI ri,cj  rk

Operation
trees

The Concept

Low-level AST for w  x - 2 * y



+

VAL
ARP

NUM
4

-

REF

REF

VAL
ARP

NUM
-26

+

*

NUM
2

REF

LAB
@G

NUM
12

+

ARP: rarp

NUM: constant
LAB: ASM label

w: at ARP+4
x: at ARP-26
Y: at @G+12

The Concept

Low-level AST for w  x - 2 * y



+

VAL
ARP

NUM
4

-

REF

REF

VAL
ARP

NUM
-26

+

*

NUM
2

REF

LAB
@G

NUM
12

+

ARP: rarp

NUM: constant
LAB: ASM label

w: at ARP+4
x: at ARP-26
Y: at @G+12

Notation

To describe these trees, we need a concise notation

+

ri cj

+(ri,cj)

+

ri rj

+(ri,rj)

Linear prefix form

Notation

To describe these trees, we need a concise notation

GETS

+

VAL
ARP

NUM
4

-

REF

REF

VAL
ARP

NUM
-26

+

*

NUM
2

REF

LAB
@G

NUM
12

+

(+(VAL1,NUM1) (REF(REF(+(VAL2,NUM2)))

*(NUM3,(REF(+(LAB1,NUM3))))))

-(REF(REF(+(VAL2,NUM2))),
 *(NUM3,(REF(+(LAB1,NUM3))))))

GETS(+(VAL1,NUM1), -(REF(REF(+(VAL2,NUM2))), *(NUM3,(REF(+(LAB1,NUM3))))))

Goal is to “tile” AST with operation trees
• A tiling is collection of <ast,op > pairs

 ast is a node in the AST
 op is an operation tree
 <ast, op > means that op could implement the subtree at ast

• A tiling ‘implements” an AST if it covers every node in the
AST and the overlap between any two trees is limited to a
single node

 <ast, op>  tiling means ast is also covered by a leaf in
another operation tree in the tiling, unless it is the root

 Where two operation trees meet, they must be compatible
(expect the value in the same location)

Tree-pattern matching

Tile 3

Tile 4

Tile 2

Tile 1
Tile 5

Tile 6

Tiling the Tree

GETS

+

VAL
ARP

NUM
4

-

REF

REF

VAL
ARP

NUM
-26

+

*

NUM
2

REF

LAB
@G

NUM
12

+

Each tile corresponds to a
sequence of operations

Emitting those operations
in an appropriate order
implements the tree.

Generating Code

Given a tiled tree

• Postorder treewalk, with node-dependent order for children
 Right child of GETS before its left child
 Might impose “most demanding first” rule … (Sethi)

• Emit code sequence for tiles, in order

• Tie boundaries together with register names
 Tile 6 uses registers produced by tiles 1 & 5
 Tile 6 emits “store rtile 5  rtile 1”
 Can incorporate a “real” allocator or can use “NextRegister++”

So, What’s Hard About This?

Finding the matches to tile the tree
• Compiler writer connects operation trees to AST subtrees

 Provides a set of rewrite rules
 Encode tree syntax, in linear form
 Associated with each is a code template

Rewrite rules: LL Integer AST into ILOC

Rule Cost Template

1 Goal  Assign 0

2 Assign  GETS(Reg1,Reg2) 1 store r2  r1

3 Assign  GETS(+(Reg1,Reg2),Reg3) 1 storeAO r3  r1,r2

4 Assign  GETS(+(Reg1,NUM2),Reg3) 1 storeAI r3  r1,n2

5 Assign  GETS(+(NUM1,Reg2),Reg3) 1 storeAI r3  r2,n1

6 Reg  LAB1 1 loadI l1  rnew

7 Reg  VAL1 0

8 Reg  NUM1 1 loadI n1  rnew

9 Reg  REF(Reg1) 1 load r1  rnew

10 Reg  REF(+ (Reg1,Reg2)) 1 loadAO r1,r2  rnew

11 Reg  REF(+ (Reg1,NUM2)) 1 loadAI r1,n2  rnew

12 Reg  REF(+ (NUM1,Reg2)) 1 loadAI r2,n1  rnew

Rewrite rules: LL Integer AST into ILOC (part II)

Rule Cost Template

13 Reg  + (Reg1,Reg2) 1 add r1,r2  rnew

14 Reg  + (Reg1,NUM2) 1 addI r1,n2  rnew

15 Reg  + (NUM1,Reg2) 1 addI r2,n1  rnew

16 Reg  - (Reg1,Reg2) 1 sub r1,r2  rnew

17 Reg  - (Reg1,NUM2) 1 subI r1,n2  rnew

18 Reg  - (NUM1,Reg2) 1 rsubI r2,n1  rnew

19 Reg  x (Reg1,Reg2) 1 mult r1,r2  rnew

20 Reg  x (Reg1,NUM2) 1 multI r1,n2  rnew

21 Reg  x (NUM1,Reg2) 1 multI r2,n1  rnew

A real set of rules would cover more than signed integers …

So, What’s Hard About This?

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example

Tile 3

REF

LAB
@G

NUM
12

+

So, What’s Hard About This?

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example

REF

LAB
@G

NUM
12

+

What rules match tile 3?

6

So, What’s Hard About This?

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example

REF

LAB
@G

NUM
12

+

What rules match tile 3?
 6: Reg  LAB1 tiles the lower left node

6 8

So, What’s Hard About This?

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example

REF

LAB
@G

NUM
12

+

What rules match tile 3?
 6: Reg  LAB1 tiles the lower left node

 8: Reg  NUM1 tiles the bottom right
node

 13

6 8

So, What’s Hard About This?

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example

REF

LAB
@G

NUM
12

+

What rules match tile 3?
 6: Reg  LAB1 tiles the lower left node

 8: Reg  NUM1 tiles the bottom right node

 13: Reg  + (Reg1,Reg2) tiles the + node

9

 13

6 8

So, What’s Hard About This?

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example

REF

LAB
@G

NUM
12

+

What rules match tile 3?
 6: Reg  LAB1 tiles the lower left node

 8: Reg  NUM1 tiles the bottom right node

 13: Reg  + (Reg1,Reg2) tiles the + node

 9: Reg  REF(Reg1) tiles the REF

9

 13

6 8

So, What’s Hard About This?

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example

REF

LAB
@G

NUM
12

+

What rules match tile 3?
 6: Reg  LAB1 tiles the lower left node

 8: Reg  NUM1 tiles the bottom right node

 13: Reg  + (Reg1,Reg2) tiles the + node

 9: Reg  REF(Reg1) tiles the REF

We denote this match as <6,8,13,9>
Of course, it implies <8,6,13,9>
Both have a cost of 4

Finding matches

REF

LAB
@G

NUM
12

+

Many Sequences Match Our Subtree

Cost Sequences

2 6,11 8,12

3 6,8,10 8,6,10 6,14,9 8,15,9

4 6,8,13,9 8,6,13,9

In general, we want the low cost sequence
• Each unit of cost is an operation (1 cycle)
• We should favour short sequences

Finding matches

REF

LAB
@G

NUM
12

+

Low Cost Matches

Sequences with Cost of 2

6: Reg  LAB1

11: Reg  REF(+(Reg1,NUM2))

loadI @G  ri

loadAI ri,12  rj

8: Reg  NUM1

12: Reg  REF(+(NUM1,Reg2))

loadI 12  ri

loadAI ri,@G  rj

These two are equivalent in cost

6,11 might be better, because @G may be longer than the
immediate field

Tiling the Tree

Still need an algorithm
• Assume each rule implements one operator
• Assume operator takes 0, 1, or 2 operands

Now, …

Tiling the Tree

Tile(n)
 Label(n)  Ø
 if n has two children then
 Tile (left child of n)
 Tile (right child of n)
 for each rule r that implements n
 if (left(r)  Label(left(n)) and
 (right(r)  Label(right(n))
 then Label(n)  Label(n)  { r }

 else if n has one child
 Tile(child of n)
 for each rule r that implements n
 if (left(r)  Label(child(n))
 then Label(n)  Label(n)  { r }

 else /* n is a leaf */
 Label(n)  {all rules that implement n }

Match binary nodes
against binary rules

Match unary nodes
against unary rules

Handle leaves with
lookup in rule table

Tiling the Tree

This algorithm
• Finds all matches in rule set
• Labels node n with that set
• Can keep lowest cost match
 at each point
• Leads to a notion of local
 optimality — lowest cost at
 each point
• Spends its time in the two
 matching loops

Tile(n)
 Label(n)  Ø
 if n has two children then
 Tile (left child of n)
 Tile (right child of n)
 for each rule r that implements n
 if (left(r)  Label(left(n)) and
 (right(r)  Label(right(n))
 then Label(n)  Label(n)  { r }

 else if n has one child
 Tile(child of n)
 for each rule r that implements n
 if (left(r)  Label(child(n))
 then Label(n)  Label(n)  { r }

 else /* n is a leaf */
 Label(n)  {all rules that implement n }

Oversimplifications
1. Only handles 1 storage

class
2. Must track low cost

sequence in each class
3. Must choose lowest

cost for subtree, across
all classes

Tiling the Tree

The extensions to handle
these complications are
pretty straightforward.

Tile(n)
 Label(n)  Ø
 if n has two children then
 Tile (left child of n)
 Tile (right child of n)
 for each rule r that implements n
 if (left(r)  Label(left(n)) and
 (right(r)  Label(right(n))
 then Label(n)  Label(n)  { r }

 else if n has one child
 Tile(child of n)
 for each rule r that implements n
 if (left(r)  Label(child(n))
 then Label(n)  Label(n)  { r }

 else /* n is a leaf */
 Label(n)  {all rules that implement n }

Tiling the Tree

Can turn matching code (inner
loop) into a table lookup

Table can get huge and sparse
|op trees| x |labels| x |labels|
 200 x 1000 x 1000
leads to 200,000,000 entries

Fortunately, they are quite
sparse & have reasonable
encodings (e.g., Chase’s work)

Tile(n)
 Label(n)  Ø
 if n has two children then
 Tile (left child of n)
 Tile (right child of n)
 for each rule r that implements n
 if (left(r)  Label(left(n)) and
 (right(r)  Label(right(n))
 then Label(n)  Label(n)  { r }

 else if n has one child
 Tile(child of n)
 for each rule r that implements n
 if (left(r)  Label(child(n))
 then Label(n)  Label(n)  { r }

 else /* n is a leaf */
 Label(n)  {all rules that implement n }

The Big Picture

• Tree patterns represent AST and ASM
• Can use matching algorithms to find low-cost tiling of AST
• Can turn a tiling into code using templates for matched rules
• Techniques (& tools) exist to do this efficiently

Hand-coded matcher like Tile Avoids large sparse table
Lots of work

Encode matching as an
automaton

O(1) cost per node
Tools like BURS (bottom-up
rewriting system), BURG

Use parsing techniques Uses known technology
Very ambiguous grammars

Linearize tree into string and
use Aho-Corasick

Finds all matches

Extra Slides Start Here

116

Other Sequences

REF

LAB
@G

NUM
12

+

6,11
 6: Reg  LAB1

 11: Reg  REF(+ (Reg1,NUM2))

Two operator rule

12 8

Other Sequences

REF

LAB
@G

NUM
12

+

8,12
 8: Reg  NUM1

 12: Reg  REF(+ (NUM1,Reg2))

Two operator rule

106 8

Other Sequences

REF

LAB
@G

NUM
12

+

6,8,10

 6: Reg  LAB1

 8: Reg  NUM1

 11: Reg  REF(+ (Reg1,Reg2))

8,6,10 looks the
same

Two operator rule

9

146

Other Sequences

REF

LAB
@G

NUM
12

+

6,14,9

 6: Reg  LAB1

 14: Reg  + (Reg1,NUM2)

 9: Reg  REF(Reg1)

All single operator
rules

9

15 8

Other Sequences

REF

LAB
@G

NUM
12

+

8,15,9

 8: Reg  NUM1

 15: Reg  + (NUM1,Reg2)

 9: Reg  REF(Reg1)

All single operator
rules

Other Sequences

6,8,13,9

 6: Reg  LAB1

 8: Reg  NUM1

 13: Reg  + (Reg1,Reg2)

 9: Reg  REF(Reg1)

All single operator
rules

9

 13

6 8

REF

LAB
@G

NUM
12

+

8,6,13,9 looks the same

	Instruction Selection, II Tree-pattern matching
	The Concept
	Slide 3
	Slide 4
	Notation
	Slide 6
	Tree-pattern matching
	Tiling the Tree
	Generating Code
	So, What’s Hard About This?
	Rewrite rules: LL Integer AST into ILOC
	Rewrite rules: LL Integer AST into ILOC (part II)
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Finding matches
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	The Big Picture
	PowerPoint Presentation
	Other Sequences
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

