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The Concept

Many compilers use tree-structured IRs
• Abstract syntax trees generated in the parser
• Trees or DAGs for expressions
These systems might well use trees to represent target ISA

Consider the ILOC add operators

If we can match these “pattern trees” against IR trees, …
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The Concept

Low-level AST for w  x - 2 * y
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Notation

To describe these trees, we need a concise notation 
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Linear prefix form
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(+(VAL1,NUM1) (REF(REF(+(VAL2,NUM2)))

*(NUM3,(REF(+(LAB1,NUM3))))))

-(REF(REF(+(VAL2,NUM2))), 
   *(NUM3,(REF(+(LAB1,NUM3))))))

GETS(+(VAL1,NUM1), -(REF(REF(+(VAL2,NUM2))), *(NUM3,(REF(+(LAB1,NUM3))))))



Goal is to “tile” AST with operation trees
• A tiling is collection of <ast,op > pairs 

 ast is a node in the AST
 op is an operation tree
 <ast, op > means that op could implement the subtree at ast

• A tiling ‘implements” an AST if it covers every node in the 
AST and the overlap between any two trees is limited to a 
single node

 <ast, op>  tiling means ast is also covered by a leaf in 
another operation tree in the tiling, unless it is the root

 Where two operation trees meet, they must be compatible 
(expect the value in the same location)

Tree-pattern matching
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Tiling the Tree

GETS

+

VAL
ARP

NUM
4

-

REF

REF

VAL
ARP

NUM
-26

+

*

NUM
2

REF

LAB
@G

NUM
12

+

Each tile corresponds to a 
sequence of operations

Emitting those operations 
in an appropriate order 
implements the tree.



Generating Code

Given a tiled tree

• Postorder treewalk, with node-dependent order for children
 Right child of GETS before its left child
 Might impose “most demanding first” rule …                 (Sethi ) 

• Emit code sequence for tiles, in order

• Tie boundaries together with register names
 Tile 6 uses registers produced by tiles 1 & 5
 Tile 6 emits “store rtile 5  rtile 1”
 Can incorporate a “real” allocator or can use “NextRegister++”



So, What’s Hard About This?

Finding the matches to tile the tree
• Compiler writer connects operation trees to AST subtrees

 Provides a set of rewrite rules
 Encode tree syntax, in linear form
 Associated with each is a code template



Rewrite rules: LL Integer AST into ILOC 

Rule Cost Template

1 Goal  Assign 0

2 Assign  GETS(Reg1,Reg2) 1 store    r2  r1

3 Assign  GETS(+(Reg1,Reg2),Reg3) 1 storeAO  r3  r1,r2

4 Assign  GETS(+(Reg1,NUM2),Reg3) 1 storeAI  r3  r1,n2

5 Assign  GETS(+(NUM1,Reg2),Reg3) 1 storeAI  r3  r2,n1

6 Reg  LAB1 1 loadI    l1  rnew

7 Reg  VAL1 0

8 Reg  NUM1 1 loadI    n1  rnew

9 Reg  REF(Reg1) 1 load     r1  rnew

10 Reg  REF(+ (Reg1,Reg2)) 1 loadAO r1,r2  rnew

11 Reg  REF(+ (Reg1,NUM2)) 1 loadAI r1,n2  rnew

12 Reg  REF(+ (NUM1,Reg2)) 1 loadAI r2,n1  rnew



Rewrite rules: LL Integer AST into ILOC (part II)

Rule Cost Template

13 Reg  + (Reg1,Reg2) 1 add    r1,r2  rnew

14 Reg  + (Reg1,NUM2) 1 addI   r1,n2  rnew

15 Reg  + (NUM1,Reg2) 1 addI   r2,n1  rnew

16 Reg  - (Reg1,Reg2) 1 sub    r1,r2  rnew

17 Reg  - (Reg1,NUM2) 1 subI   r1,n2  rnew

18 Reg  - (NUM1,Reg2) 1 rsubI  r2,n1  rnew

19 Reg  x (Reg1,Reg2) 1 mult   r1,r2  rnew

20 Reg  x (Reg1,NUM2) 1 multI  r1,n2  rnew

21 Reg  x (NUM1,Reg2) 1 multI  r2,n1  rnew

A real set of rules would cover more than signed integers …



So, What’s Hard About This?

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example
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  6:  Reg  LAB1 tiles the lower left node

  8: Reg  NUM1 tiles the bottom right 
node
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So, What’s Hard About This?

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example
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What rules match tile 3?
  6:  Reg  LAB1 tiles the lower left node

  8: Reg  NUM1 tiles the bottom right node

 13: Reg  + (Reg1,Reg2) tiles the + node

  9:  Reg  REF(Reg1) tiles the REF

We denote this match as <6,8,13,9>
Of course, it implies <8,6,13,9>
Both have a cost of 4 



Finding matches
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Many Sequences Match Our Subtree

Cost Sequences

2 6,11 8,12

3 6,8,10 8,6,10 6,14,9 8,15,9

4 6,8,13,9 8,6,13,9

In general, we want the low cost sequence
• Each unit of cost is an operation   (1 cycle)
• We should favour short sequences



Finding matches
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Low Cost Matches 

Sequences with Cost of 2

6: Reg  LAB1

11: Reg  REF(+(Reg1,NUM2))

loadI  @G     ri

loadAI ri,12  rj

8: Reg  NUM1

12: Reg  REF(+(NUM1,Reg2))

loadI 12      ri

loadAI ri,@G  rj

These two are equivalent in cost

6,11 might be better, because @G may be longer than the 
immediate field



Tiling the Tree

Still need an algorithm
• Assume each rule implements one operator
• Assume operator takes 0, 1, or 2 operands

Now, …



Tiling the Tree

Tile(n)
   Label(n)  Ø
   if n has two children then
       Tile (left child of n)
       Tile (right child of n)
       for each rule r that implements n
           if (left(r)  Label(left(n)) and
              (right(r)  Label(right(n)) 
             then Label(n)  Label(n)  { r }

  else if n has one child
       Tile(child of n)
       for each rule r that implements n
           if (left(r)  Label(child(n)) 
              then Label(n)  Label(n)  { r }

  else  /* n is a leaf */
       Label(n)  {all  rules that implement n }

Match binary nodes 
against binary rules

Match unary nodes 
against unary rules

Handle leaves with 
lookup in rule table



Tiling the Tree

This algorithm
• Finds all matches in rule set
• Labels node n with that set
• Can keep lowest cost match
   at each point
• Leads to a notion of local 
   optimality — lowest cost at 
   each point
• Spends its time in the two
   matching loops

Tile(n)
   Label(n)  Ø
   if n has two children then
       Tile (left child of n)
       Tile (right child of n)
       for each rule r that implements n
           if (left(r)  Label(left(n)) and
              (right(r)  Label(right(n)) 
             then Label(n)  Label(n)  { r }

  else if n has one child
       Tile(child of n)
       for each rule r that implements n
           if (left(r)  Label(child(n)) 
              then Label(n)  Label(n)  { r }

  else  /* n is a leaf */
       Label(n)  {all  rules that implement n }



Oversimplifications
1. Only handles 1 storage 

class
2. Must track low cost 

sequence in each class
3. Must choose lowest 

cost for subtree, across 
all classes

Tiling the Tree

The extensions to handle 
these complications are 
pretty straightforward.

Tile(n)
   Label(n)  Ø
   if n has two children then
       Tile (left child of n)
       Tile (right child of n)
       for each rule r that implements n
           if (left(r)  Label(left(n)) and
              (right(r)  Label(right(n)) 
             then Label(n)  Label(n)  { r }

  else if n has one child
       Tile(child of n)
       for each rule r that implements n
           if (left(r)  Label(child(n)) 
              then Label(n)  Label(n)  { r }

  else  /* n is a leaf */
       Label(n)  {all  rules that implement n }



Tiling the Tree

Can turn matching code (inner 
loop) into a table lookup

Table can get huge and sparse
|op trees| x |labels| x |labels|
    200       x   1000   x   1000 
leads to 200,000,000 entries

Fortunately, they are quite 
sparse & have reasonable 
encodings (e.g., Chase’s work)

Tile(n)
   Label(n)  Ø
   if n has two children then
       Tile (left child of n)
       Tile (right child of n)
       for each rule r that implements n
           if (left(r)  Label(left(n)) and
              (right(r)  Label(right(n)) 
             then Label(n)  Label(n)  { r }

  else if n has one child
       Tile(child of n)
       for each rule r that implements n
           if (left(r)  Label(child(n)) 
              then Label(n)  Label(n)  { r }

  else  /* n is a leaf */
       Label(n)  {all  rules that implement n }



The Big Picture

• Tree patterns represent AST and ASM
• Can use matching algorithms to find low-cost tiling of AST
• Can turn a tiling into code using templates for matched rules
• Techniques (& tools) exist to do this efficiently

Hand-coded matcher like Tile Avoids large sparse table
Lots of work

Encode matching as an 
automaton

O(1) cost per node
Tools like BURS (bottom-up 
rewriting system), BURG

Use parsing techniques Uses known technology
Very ambiguous grammars

Linearize tree into string and 
use Aho-Corasick

Finds all matches



Extra Slides Start Here
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Other Sequences
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6,11
  6:  Reg  LAB1 

  11: Reg  REF( + (Reg1,NUM2))

Two operator rule
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Other Sequences
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8,12
   8:  Reg  NUM1 

  12: Reg  REF( + (NUM1,Reg2))

Two operator rule
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Other Sequences
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6,8,10

   6:  Reg  LAB1

   8:  Reg  NUM1 

  11: Reg  REF( + (Reg1,Reg2))

8,6,10 looks the 
same

Two operator rule
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Other Sequences
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6,14,9

   6:  Reg  LAB1

  14:  Reg  + (Reg1,NUM2) 

   9: Reg  REF(Reg1)

All single operator 
rules
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Other Sequences

REF

LAB
@G

NUM
12

+ 

8,15,9

   8:  Reg  NUM1

  15:  Reg  + (NUM1,Reg2) 

   9: Reg  REF(Reg1)

All single operator 
rules



Other Sequences

6,8,13,9

  6:  Reg  LAB1 

   8: Reg  NUM1

 13: Reg  + (Reg1,Reg2)

  9:  Reg  REF(Reg1)

All single operator 
rules
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8,6,13,9 looks the same
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