
Code Shape III
Booleans, Relationals, & Control flow

Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.

EaC section 7.4 & 7.8

Boolean & Relational Values

How should the compiler represent them?
• Answer depends on the target machine

Two classic approaches
• Numerical representation
• Positional (implicit) representation

Correct choice depends on both context and ISA

Boolean & Relational Values

Numerical representation
• Assign values to TRUE and FALSE
• Use hardware AND, OR, and NOT operations
• Use comparison to get a boolean from a relational expression

Examples

x < y becomes

becomesif (l < r)
 stmt

1

else
 stmt

2

cmp_LT r
x
, r

y
 r→

1

cmp_LT r
l
, r

r
 r→

1

cbr r
1
 stmt→

1
, stmt

2

conditional branch

Boolean & Relational Values

What if the ISA uses a condition code?
• Must use a conditional branch to interpret result of compare
• Necessitates branches in the evaluation

Example:

This “positional representation” is much more complex

x < y becomes cmp r
x
, r

y
 cc→

1

cbr_LT cc
1
 L→

T
, L

F

loadI 1 r→
2

br L→
E

loadI 0 r→
2

… other stmts ...

L
T
:

L
F
:

L
E
:

Boolean & Relational Values

What if the ISA uses a condition code?
• Must use a conditional branch to interpret result of compare
• Necessitates branches in the evaluation

Example:

This “positional representation” is much more complex

x < y becomes cmp r
x
, r

y
 cc→

1

cbr_LT cc
1
 L→

T
, L

F

loadI 1 r→
2

br L→
E

loadI 0 r→
2

… other stmts ...

L
T
:

L
F
:

L
E
:

Condition codes

• are an architect’s hack

• allow ISA to avoid
 some comparisons

• complicates code for
 simple cases

Boolean & Relational Values

The last example actually encodes result in the PC

If result is used to control an operation, this may be enough

VARIATIONS ON THE ILOC BRANCH STRUCTURE

Straight Condition Codes Boolean Compares

comp rx,rycc1 cmp_LT rx,ryr1

cbr_LT cc1 L1,L2 cbr r1 L1,L2

L1: add rc,rdra L1: add rc,rdra

br LOUT br LOUT

L2: add re,rf ra L2: add re,rf ra

br LOUT br LOUT

LOUT: nop LOUT: nop

if (x < y)
 then a  c + d
 else a  e + f

Example

Boolean & Relational Values

Conditional move & predication both simplify this code

Both versions avoid the branches

Both are shorter than CCs or Boolean-valued compare

Are they better?

OTHER ARCHITECTURAL VARIATIONS
Conditional Move Predicated Execution

comp rx,rycc1 cmp_LT rx,ryr1

add rc,rdr1 (r1)? add rc,rdra

add re,rf r2 (r1)? add re,rf ra

i2i_< cc1,r1,r2ra

if (x < y)
 then a  c + d
 else a  e + f

Example

Boolean & Relational Values

Consider the assignment x  a  b  c  d

Here, the boolean compare produces much better code

VARIATIONS ON THE ILOC BRANCH STRUCTURE

Straight Condition Codes Boolean Compare
comp ra,rbcc1 cmp_LT ra,rbr1

cbr_LT cc1 L1,L2 cmp_LT rc,rdr2

L1: comp rc,rdcc2 and r1,r2rx

cbr_LT cc2 L3,L2

L2: loadI 0  rx

br LOUT

L3: loadI 1  rx

br LOUT

LOUT: nop

Boolean & Relational Values

Conditional move & predication help here, too

Conditional move is worse than Boolean compares

Predication is identical to Boolean compares

Context & hardware determine the appropriate choice

OTHER ARCHITECTURAL VARIATIONS

Conditional Move Predicated
Execution

comp ra,rb

cc1

cmp_LT ra,rbr1

i2i_< cc1,rT,rF r1 cmp_LT rc,rdr2

comp rc,rd

cc2

and r1,r2rx

i2i_< cc2,rT,rF r2

and r1,r2 rx

x  a  b  c  d

Control Flow

If-then-else
• Follow model for evaluating relationals & booleans with

branches

Branching versus predication (e.g., IA-64)

• Frequency of execution
 Uneven distribution  do what it takes to speed common case

• Amount of code in each case

 Unequal amounts means predication may waste issue slots

• Control flow inside the construct
 Any branching activity within the case base complicates the

predicates and makes branches attractive

Control Flow

Loops
• Evaluate condition before loop (if needed)
• Evaluate condition after loop
• Branch back to the top (if needed)

Merges test with last block of loop body

while, for, do, & until all
fit this basic model

Pre-test

Loop body

Post-test

Next block

Loop Implementation Code

 loadI 1  r1

loadI 1  r2

loadI 100 r3

cmp_GE r1, r3 r4

cbr r4 L2, L1

L1: body

 add r1, r2 r1

 cmp_LT r1, r3 r5

 cbr r5 L1, L2

L2: next statement

for (i = 1; i< 100; i++) { body }

next statement

Pre-test

Post-test

Initialization

Break statements

Many modern programming languages include a break
• Exits from the innermost control-flow statement

 Out of the innermost loop
 Out of a case statement

Translates into a jump
• Targets statement outside control-

flow construct
• Creates multiple-exit construct
• Skip in loop goes to next iteration

Only make sense if loop has > 1 block

Pre-test

Loop head

Post-test

Next block

B 1 B 2Break
in B 1

Skip
in B 2

Control Flow

Case Statements

1 Evaluate the controlling expression

2 Branch to the selected case

3 Execute the code for that case

4 Branch to the statement after the case

Parts 1, 3, & 4 are well understood, part 2 is the key

Control Flow

Case Statements

1 Evaluate the controlling expression

2 Branch to the selected case

3 Execute the code for that case

4 Branch to the statement after the case use break)

Parts 1, 3, & 4 are well understood, part 2 is the key

Strategies
• Linear search (nested if-then-else constructs)
• Build a table of case expressions & binary search it
• Directly compute an address (requires dense case set)

Surprisingly many
compilers do this

for all cases!

	Code Shape III Booleans, Relationals, & Control flow
	Boolean & Relational Values
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Control Flow
	Slide 11
	Loop Implementation Code
	Break statements
	Slide 14
	Slide 15

