Introduction to Code Generation

Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
A compiler is a lot of fast stuff followed by some hard problems.

→ The hard stuff is mostly in code generation and optimization.
→ For superscalars, its allocation & scheduling that count.
For the rest of CT, we assume the following model:

- Selection is fairly simple (problem of the 1980s)
- Allocation & scheduling are complex
- Operation placement is not yet critical (unified register set)

What about the IR?
- Low-level, RISC-like IR called ILOC
- Has “enough” registers
- ILOC was designed for this stuff

Branches, compares, & labels
Memory tags
Hierarchy of loads & stores
Provision for multiple ops/cycle
Definitions

Instruction selection
- Mapping IR into assembly code
- Assumes a fixed storage mapping & code shape
- Combining operations, using address modes

Instruction scheduling
- Reordering operations to hide latencies
- Assumes a fixed program (set of operations)
- Changes demand for registers

Register allocation
- Deciding which values will reside in registers
- Changes the storage mapping, may add false sharing
- Concerns about placement of data & memory operations

These 3 problems are tightly coupled.
The Big Picture

How hard are these problems?

Instruction selection
• Can make locally optimal choices, with automated tool
• Global optimality is (undoubtedly) NP-Complete

Instruction scheduling
• Single basic block \Rightarrow heuristics work quickly
• General problem, with control flow \Rightarrow NP-Complete

Register allocation
• Single basic block, no spilling, & 1 register size \Rightarrow linear time
• Whole procedure is NP-Complete
The Big Picture

Conventional wisdom says that we lose little by solving these problems independently

Instruction selection
- Use some form of pattern matching
- Assume enough registers or target “important” values

Instruction scheduling
- Within a block, list scheduling is “close” to optimal
- Across blocks, build framework to apply list scheduling

Register allocation
- Start from virtual registers & map “enough” into k
- With targeting, focus on good priority heuristic

Optimal for > 85% of blocks
Code Shape

Definition
• All those nebulous properties of the code that impact performance & code “quality”
• Includes code, approach for different constructs, cost, storage requirements & mapping, & choice of operations
• Code shape is the end product of many decisions (big & small)

Impact
• Code shape influences algorithm choice & results
• Code shape can encode important facts, or hide them

Rule of thumb: expose as much derived information as possible
• Example: explicit branch targets in ILOC simplify analysis
• Example: hierarchy of memory operations in ILOC (in EaC)
Code Shape

An example:

- What if x is 2 and z is 3?
- What if y+z is evaluated earlier?

The “best” shape for x+y+z depends on contextual knowledge

→ There may be several conflicting options

Addition is commutative & associative for integers
Another example -- the case statement

- Implement it as cascaded if-then-else statements
 - Cost depends on where your case actually occurs
 - $O(\text{number of cases})$

- Implement it as a binary search
 - Need a dense set of conditions to search
 - Uniform $(\log n)$ cost

- Implement it as a jump table
 - Lookup address in a table & jump to it
 - Uniform (constant) cost

Compiler must choose best implementation strategy
No amount of massaging or transforming will convert one into another
Generating Code for Expressions

The key code quality issue is holding values in registers

• When can a value be safely allocated to a register?
 → When only 1 name can reference its value
 → Pointers, parameters, aggregates & arrays all cause trouble

• When should a value be allocated to a register?
 → When it is both *safe* & *profitable*

Encoding this knowledge into the *IR*

• Use code shape to make it known to every later phase
• Assign a virtual register to anything that can go into one
• Load or store the others at each reference
• \texttt{ILOC} has textual “memory tags” on loads, stores, & calls
• \texttt{ILOC} has a hierarchy of loads & stores *(see the digression)*

Relies on a strong register allocator
Generating Code for Expressions

The concept
- Use a simple treewalk evaluator
- Bury complexity in routines it calls
 - \(base(), offset(), \) & \(val() \)
- Implements expected behavior
 - Visits \& evaluates children
 - Emits code for the op itself
 - Returns register with result
- Works for simple expressions
- Easily extended to other operators
- Does not handle control flow

```cpp
expr(node) {
  int result, t1, t2;
  switch (type(node)) {
    case \times, \div, +, -:
      t1 \leftarrow expr(left child(node));
      t2 \leftarrow expr(right child(node));
      result \leftarrow NextRegister();
      emit(op(node), t1, t2, result);
      break;
    case IDENTIFIER:
      t1 \leftarrow base(node);
      t2 \leftarrow offset(node);
      result \leftarrow NextRegister();
      emit(loadAO, t1, t2, result);
      break;
    case NUMBER:
      result \leftarrow NextRegister();
      emit(loadI, val(node), none, result);
      break;
  }
  return result;
}
```
Generating Code for Expressions

Example:

\[
\begin{align*}
&x+y \\
\Rightarrow &\text{expr}(x) \\
&\text{loadI} \quad @x \quad \rightarrow r1 \\
&\text{loadAO} \quad r0, r1 \quad \rightarrow r2 \\
\Rightarrow &\text{expr}(y) \\
&\text{loadI} \quad @y \quad \rightarrow r3 \\
&\text{loadAO} \quad r0, r3 \quad \rightarrow r4 \\
\Rightarrow &\text{NextRegister}() : r5 \\
\Rightarrow &\text{emit} (\text{add}, r2, r4, r5) \\
&\text{add} \quad r2, r5 \quad \rightarrow r5
\end{align*}
\]

expr(node) {
 int result, t1, t2;
 switch (type(node)) {
 case \times,\div,+,− :
 t1← expr(left child(node));
 t2← expr(right child(node));
 result ← NextRegister();
 emit (op(node), t1, t2, result);
 break;
 case IDENTIFIER:
 t1← base(node);
 t2← offset(node);
 result ← NextRegister();
 emit (loadAO, t1, t2, result);
 break;
 case NUMBER:
 result ← NextRegister();
 emit (loadI, val(node), none, result);
 break;
 }
 return result;
}
Generating Code for Expressions

expr(node) {
 int result, t1, t2;
 switch (type(node)) {
 case \times, ÷, +, −:
 t1 ← expr(left child(node));
 t2 ← expr(right child(node));
 result ← NextRegister();
 emit (op(node), t1, t2, result);
 break;
 case IDENTIFIER:
 t1 ← base(node);
 t2 ← offset(node);
 result ← NextRegister();
 emit (loadAO, t1, t2, result);
 break;
 case NUMBER:
 result ← NextRegister();
 emit (loadI, val(node), none, result);
 break;
 }
 return result;
}

Example:

\[x \times y - 2 \]

Generates:

\[
\begin{align*}
&\text{loadI} @x \rightarrow r1 \\
&\text{loadA0} r0, r1 \rightarrow r2 \\
&\text{loadI} 2 \rightarrow r3 \\
&\text{loadI} @y \rightarrow r4 \\
&\text{loadA0} r0, r4 \rightarrow r5 \\
&\text{mult} r3, r5 \rightarrow r6 \\
&\text{sub} r2, r6 \rightarrow r7
\end{align*}
\]
Extending the Simple Treewalk Algorithm

More complex cases for IDENTIFIER

• What about values in registers?
 → Modify the IDENTIFIER case
 → Already in a register ⇒ return the register name
 → Not in a register ⇒ load it as before, but record the fact
 → Choose names to avoid creating false dependences

• What about parameter values?
 → Many linkages pass the first several values in registers
 → Call-by-value ⇒ just a local variable with “funny” offset
 → Call-by-reference ⇒ needs an extra indirection

• What about function calls in expressions?
 → Generate the calling sequence & load the return value
 → Severely limits compiler’s ability to reorder operations
Extending the Simple Treewalk Algorithm

Adding other operators
• Evaluate the operands, then perform the operation
• Complex operations may turn into library calls
• Handle assignment as an operator

Mixed-type expressions
• Insert conversions as needed from conversion table
• Most languages have symmetric & rational conversion tables

<table>
<thead>
<tr>
<th>Typical Addition Table</th>
<th>+</th>
<th>Integer</th>
<th>Real</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>Integer</td>
<td>Real</td>
<td>Double</td>
<td></td>
</tr>
<tr>
<td>Real</td>
<td>Real</td>
<td>Real</td>
<td>Double</td>
<td></td>
</tr>
<tr>
<td>Double</td>
<td>Double</td>
<td>Double</td>
<td>Double</td>
<td></td>
</tr>
</tbody>
</table>
Extending the Simple Treewalk Algorithm

What about evaluation order?
• Can use commutativity & associativity to improve code
• This problem is truly hard

What about order of evaluating operands?
• 1st operand must be preserved while 2nd is evaluated
• Takes an extra register for 2nd operand
• Should evaluate more demanding operand expression first
 (Ershov in the 1950’s, Sethi in the 1970’s)

This is the Sethi-Ullman scheme: generating code during parsing
Generating Code in the Parser

Need to generate an initial IR form

- Chapter 4 talks about **ASTs & ILOC**
- Might generate an AST, use it for some high-level, near-source work (type checking, optimization), then traverse it and emit a lower-level IR similar to **ILOC**

The big picture

- Recursive algorithm really works bottom-up
 - Actions on non-leaves occur after children are done

- Can encode same basic structure into *ad-hoc* SDT* scheme
 - Identifiers load themselves & stack virtual register name
 - Operators emit appropriate code & stack resulting VR name
 - Assignment requires evaluation to an *lvalue* or an *rvalue*
 - Some modal behavior is unavoidable

Syntax-directed translation
Recursive Treewalk versus Ad-hoc SDT

```
expr(node) {
    int result, t1, t2;
    switch (type(node)) {
        case ×,÷,+,−:
            t1 ← expr(left child(node));
            t2 ← expr(right child(node));
            result ← NextRegister();
            emit (op(node), t1, t2, result);
            break;
        case IDENTIFIER:
            t1 ← base(node);
            t2 ← offset(node);
            result ← NextRegister();
            emit (loadAO, t1, t2, result);
            break;
        case NUMBER:
            result ← NextRegister();
            emit (loadI, val(node), none, result);
            break;
    }
    return result;
}
```

```
Goal :  Expr { $$ = $1; } ;
Expr:   Expr PLUS Term
        { t = NextRegister();
            emit(add,$1,$3,t); $$ = t; }
        | Expr MINUS Term {…}
        | Term { $$ = $1; }
Term:   Term TIMES Factor
        { t = NextRegister();
            emit(mult,$1,$3,t); $$ = t; }
        | Term DIVIDES Factor {…}
        | Factor { $$ = $1; }
Factor: NUMBER
        { t = NextRegister();
            emit(loadI,val($1),none, t );
            $$ = t; }
        | ID
        { t1 = base($1);
            t2 = offset($1);
            t = NextRegister();
            emit(loadAO,t1,t2,t);
            $$ = t; }
```
Handling Assignment (just another operator)

\[lhs \leftarrow rhs \]

Strategy

- Evaluate \(rhs \) to a value \((\text{an rvalue})\)
- Evaluate \(lhs \) to a location \((\text{an lvalue})\)
 - \(lvalue \) is a register \(\implies\) move \(rhs \)
 - \(lvalue \) is an address \(\implies\) store \(rhs \)
- If \(rvalue \) & \(lvalue \) have different types
 - Evaluate \(rvalue \) to its “natural” type
 - Convert that value to the type of \(*lvalue\)

Unambiguous scalars go into registers
Ambiguous scalars or aggregates go into memory

Let hardware sort out the addresses!
Handling Assignment

What if the compiler cannot determine the rhs’s type?
• This is a property of the language & the specific program
• If type-safety is desired, compiler must insert a **run-time** check
• Add a *tag* field to the data items to hold type information

Code for assignment becomes more complex

evaluate rhs
if type(lhs) ≠ rhs.tag
 then
 convert rhs to type(lhs) or
 signal a run-time error
 lhs ← rhs

This is much more complex than if it knew the types
Handling Assignment

Compile-time type-checking
- Goal is to eliminate both the check & the tag
- Determine, at compile time, the type of each subexpression
- Use compile-time types to determine if a run-time check is needed

Optimization strategy
- If compiler knows the type, move the check to compile-time
- Unless tags are needed for garbage collection, eliminate them
- If check is needed, try to overlap it with other computation

Can design the language so all checks are static
Handling Assignment (with reference counting)

The problem with reference counting
• Must adjust the count on each pointer assignment
• Overhead is significant, relative to assignment

Code for assignment becomes

evaluate rhs
lhs→count ← lhs→count - 1
lhs ← addr(rhs)
rhs→count ← rhs→count + 1

This adds 1 +, 1 -, 2 loads, & 2 stores

With extra functional units & large caches, this may become either cheap or free ...
How does the compiler handle $A[i,j]$?

First, must agree on a storage scheme:

Row-major order (most languages)
- Lay out as a sequence of consecutive rows
- Rightmost subscript varies fastest

Column-major order (Fortran)
- Lay out as a sequence of columns
- Leftmost subscript varies fastest

Indirection vectors (Java)
- Vector of pointers to pointers to ... to values
- Takes much more space, trades indirection for arithmetic
- Not amenable to analysis
Laying Out Arrays

The Concept

Row-major order

<table>
<thead>
<tr>
<th></th>
<th>1,1</th>
<th>1,2</th>
<th>1,3</th>
<th>1,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1</td>
<td>1,2</td>
<td>1,3</td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>2,1</td>
<td>2,2</td>
<td>2,3</td>
<td>2,4</td>
<td></td>
</tr>
</tbody>
</table>

Column-major order

<table>
<thead>
<tr>
<th></th>
<th>1,1</th>
<th>2,1</th>
<th>1,2</th>
<th>2,2</th>
<th>1,3</th>
<th>2,3</th>
<th>1,4</th>
<th>2,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1</td>
<td>2,1</td>
<td>1,2</td>
<td>2,2</td>
<td>1,3</td>
<td>2,3</td>
<td>1,4</td>
<td>2,4</td>
<td></td>
</tr>
</tbody>
</table>

Indirection vectors

These have distinct & different cache behaviour
Computing an Array Address

A[i]

- $@A + (i - \text{low}) \times \text{sizeof}(A[1])$
- In general: base(A) + (i – low) x sizeof(A[1])
Computing an Array Address

A[i]

• @A + (i – low) x sizeof(A[1])
• In general: base(A) + (i – low) x sizeof(A[1])

int A[1:10] ⇒ low is 1
Make low 0 for faster access (saves a -)

Almost always a power of 2, known at compile-time ⇒ use a shift for speed
Computing an Array Address

A[i]
• @A + (i - low) x sizeof(A[1])
• In general: base(A) + (i - low) x sizeof(A[1])

What about A[i_1,i_2]?

Row-major order, two dimensions
@A + ((i_1 - low_1) x (high_2 - low_2 + 1) + i_2 - low_2) x sizeof(A[1])

Column-major order, two dimensions
@A + ((i_2 - low_2) x (high_1 - low_1 + 1) + i_1 - low_1) x sizeof(A[1])

Indirection vectors, two dimensions
*(A[i_1])[i_2] — where A[i_1] is, itself, a 1-d array reference

This stuff looks expensive! Lots of implicit +, -, x ops
Optimizing Address Calculation for $A[i,j]$ in row-major order

$@A + (i-\text{low}_1)(\text{high}_2-\text{low}_2+1) \times w + (j - \text{low}_2) \times w$

Which can be factored into

$@A + i \times (\text{high}_2-\text{low}_2+1) \times w + j \times w$

$- (\text{low}_1 \times (\text{high}_2-\text{low}_2+1) \times w) + (\text{low}_2 \times w)$

If low_i, high_i, and w are known, the last term is a constant.

Define $@A_0$ as

$@A - (\text{low}_1 \times (\text{high}_2-\text{low}_2+1) \times w + \text{low}_2 \times w$

And len_2 as $(\text{high}_2-\text{low}_2+1)$

Then, the address expression becomes

$@A_0 + (i \times \text{len}_2 + j) \times w$

Compile-time constants
Array References

What about arrays as actual parameters?

Whole arrays, as call-by-reference parameters
- Need dimension information ⇒ build a dope vector
- Store the values in the calling sequence
- Pass the address of the dope vector in the parameter slot
- Generate complete address polynomial at each reference

Some improvement is possible
- Save len_i and low_i rather than low_i and high_i
- Pre-compute the fixed terms in prologue sequence

What about call-by-value?
- Most c-b-v (call by value) languages pass arrays by reference
- This is a language design issue
Array References

What about $A[12]$ as an actual parameter?

If corresponding parameter is a scalar, it’s easy
• Pass the address or value, as needed
• Must know about both formal & actual parameter
• Language definition must force this interpretation

What is corresponding parameter is an array?
• Must know about both formal & actual parameter
• Meaning must be well-defined and understood
• Cross-procedural checking of conformability

⇒ Again, we’re treading on language design issues
Array References

What about variable-sized arrays?

Local arrays dimensioned by actual parameters
• Same set of problems as parameter arrays
• Requires dope vectors (or equivalent)
 → dope vector at fixed offset in activation record
 ⇒ Different access costs for textually similar references

This presents a lot of opportunity for a good optimizer
• Common subexpressions in the address polynomial
• Contents of dope vector are fixed during each activation
• Should be able to recover much of the lost ground

⇒ Handle them like parameter arrays
Example: Array Address Calculations in a Loop

```fortran
DO J = 1, N
END DO

• **Naïve**: Perform the address calculation twice

```fortran
DO J = 1, N
 R1 = @A_0 + (J \times \text{len}_1 + I) \times \text{floatsize}
 R2 = @B_0 + (J \times \text{len}_1 + I) \times \text{floatsize}
 MEM(R1) = MEM(R1) + MEM(R2)
END DO
```
Example: Array Address Calculations in a Loop

DO J = 1, N
END DO

- **Sophisticated**: Move common calculations out of loop

R1 = I x floatsize
c = len1 x floatsize  ! Compile-time constant
R2 = @A0 + R1
R3 = @B0 + R1
DO J = 1, N
    a = J x c
    R4 = R2 + a
    R5 = R3 + a
    MEM(R4) = MEM(R4) + MEM(R5)
END DO
Example: Array Address Calculations in a Loop

DO J = 1, N
END DO

• Very sophisticated: Convert multiply to add (Operator Strength Reduction)

R1 = I x floatsize
c = len_1 x floatsize  ! Compile-time constant
R2 = @A_0 + R1 ; R3 = @B_0 + R1
DO J = 1, N
   R2 = R2 + c
   R3 = R3 + c
   MEM(R2) = MEM(R2) + MEM(R3)
END DO

See, for example, Cooper, Simpson, & Vick, “Operator Strength Reduction”, ACM TOPLAS, Sept 2001