

Introduction to Code Generation

Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.

Structure of a Compiler

A compiler is a lot of fast stuff followed by some hard problems

- \rightarrow The hard stuff is mostly in code generation and optimization
- \rightarrow For superscalars, its allocation & scheduling that count

Structure of a Compiler

For the rest of CT, we assume the following model

- Selection is fairly simple (problem of the 1980s)
- Allocation & scheduling are complex
- Operation placement is not yet critical *(unified register set)*

What about the IR ?

- Low-level, **Risc**-like IR called **ILOC**
- Has "enough" registers
- **ILOC** was designed for this stuff

Branches, compares, & labels Memory tags Hierarchy of loads & stores Provision for multiple ops/cycle

Definitions

Instruction selection

- Mapping <u>IR</u> into assembly code
- Assumes a fixed storage mapping & code shape
- Combining operations, using address modes

Instruction scheduling

- Reordering operations to hide latencies
- Assumes a fixed program *(set of operations)*
- Changes demand for registers

Register allocation

- Deciding which values will reside in registers
- Changes the storage mapping, may add false sharing
- Concerns about placement of data & memory operations

These 3 problems are tightly coupled.

The Big Picture

How hard are these problems?

Instruction selection

- Can make locally optimal choices, with automated tool
- Global optimality is (undoubtedly) NP-Complete

Instruction scheduling

- Single basic block \Rightarrow heuristics work quickly
- General problem, with control flow \Rightarrow NP-Complete

Register allocation

- Single basic block, no spilling, & 1 register size \Rightarrow linear time
- Whole procedure is NP-Complete

Conventional wisdom says that we lose little by solving these problems independently

Instruction selection

- Use some form of pattern matching
- Assume enough registers or target "important" values

Optimal for

> 85% of blocks

Instruction scheduling

- Within a block, list scheduling is "close" to optimal
- Across blocks, build framework to apply list scheduling

Register allocation

- Start from virtual registers & map "enough" into k
- With targeting, focus on good priority heuristic

Code Shape

Definition

- All those nebulous properties of the code that impact performance & code "quality"
- Includes code, approach for different constructs, cost, storage requirements & mapping, & choice of operations
- Code shape is the end product of many decisions (big & small)

Impact

- Code shape influences algorithm choice & results
- Code shape can encode important facts, or hide them

Rule of thumb: expose as much derived information as possible

- Example: explicit branch targets in ILOC simplify analysis
- Example: hierarchy of memory operations in ILOC (in EaC)

Code Shape

An example:

- What if x is 2 and z is 3?
- What if y+z is evaluated earlier?

Addition is commutative & associative for integers

- The "best" shape for x+y+z depends on contextual knowledge
 - \rightarrow There may be several conflicting options

Code Shape

Another example -- the case statement

- Implement it as cascaded if-then-else statements
 - $\rightarrow\,$ Cost depends on where your case actually occurs
 - \rightarrow O(number of cases)
- Implement it as a binary search
 - \rightarrow Need a dense set of conditions to search
 - \rightarrow Uniform (log n) cost
- Implement it as a jump table
 - \rightarrow Lookup address in a table & jump to it
 - \rightarrow Uniform (constant) cost

Compiler must choose best implementation strategy No amount of massaging or transforming will convert one into another

The key code quality issue is holding values in registers

- When can a value be safely allocated to a register?
 - \rightarrow When only 1 name can reference its value
 - → Pointers, parameters, aggregates & arrays all cause trouble
- When should a value be allocated to a register?
 - \rightarrow When it is both <u>safe & profitable</u>

Encoding this knowledge into the IR

- Use code shape to make it known to every later phase
- Assign a virtual register to anything that can go into one
- Load or store the others at each reference
- ILOC has textual "memory tags" on loads, stores, & calls
- **ILOC** has a hierarchy of loads & stores (see the digression)

Relies on a strong register allocator

```
expr(node) {
  int result, t1, t2;
  switch (type(node)) {
      case \times, \div, +, -:
          t1 \leftarrow expr(left child(node));
          t2 \leftarrow expr(right child(node));
          result \leftarrow NextRegister();
          emit (op(node), t1, t2, result);
          break:
      case IDENTIFIER:
          t1 \leftarrow base(node);
          t2← offset(node);
          result \leftarrow NextRegister();
          emit (loadAO, t1, t2, result);
          break:
      case NUMBER:
          result \leftarrow NextRegister();
          emit (loadl, val(node), none, result);
          break:
       return result:
```

The concept

- Use a simple treewalk evaluator
- Bury complexity in routines it calls

> base(), offset(), & val()

- Implements expected behavior
 - > Visits & evaluates children
 - > Emits code for the op itself
 - > Returns register with result
- Works for simple expressions
- Easily extended to other operators
- Does not handle control flow

```
expr(node) {
  int result, t1, t2;
                                                            E
  switch (type(node)) {
      case \times, \div, +, -:
          t1 \leftarrow expr(left child(node));
          t2 \leftarrow expr(right child(node));
                                                            Ρ
          result ← NextRegister();
          emit (op(node), t1, t2, result);
                                                            е
          break:
      case IDENTIFIER:
          t1 \leftarrow base(node);
          t2← offset(node);
          result \leftarrow NextRegister();
          emit (loadAO, t1, t2, result);
                                                            e
          break:
      case NUMBER:
          result \leftarrow NextRegister();
          emit (loadl, val(node), none, result);
          break:
       }
                                                            Ν
       return result;
                                                            e
```

Example:	x	+	у		
roduces	:				
expr(x)					
loadI	@x	\rightarrow	r1		
loadA0	@x r0,r1	→	r2		
expr(y)					
loadI	@y	\rightarrow	r3		
loadA0	@y r0,r3	→	r4		
NextRegis	ter() : r5				
emit(add, r2, r4, r5)					

r2,r5

→ r5

add

```
expr(node) {
  int result, t1, t2;
  switch (type(node)) {
      case \times, \div, +, -:
          t1 \leftarrow expr(left child(node));
          t2 \leftarrow expr(right child(node));
          result \leftarrow NextRegister();
          emit (op(node), t1, t2, result);
          break:
      case IDENTIFIER:
          t1 \leftarrow base(node);
          t2← offset(node);
          result \leftarrow NextRegister();
          emit (loadAO, t1, t2, result);
          break:
      case NUMBER:
          result \leftarrow NextRegister();
          emit (loadl, val(node), none, result);
          break:
        }
       return result:
```


More complex cases for IDENTIFIER

- What about values in registers?
 - \rightarrow Modify the **IDENTIFIER** case
 - \rightarrow Already in a register \Rightarrow return the register name
 - \rightarrow Not in a register \Rightarrow load it as before, but record the fact
 - \rightarrow Choose names to avoid creating false dependences
- What about parameter values?
 - \rightarrow Many linkages pass the first several values in registers
 - \rightarrow Call-by-value \Rightarrow just a local variable with "funny" offset
 - \rightarrow Call-by-reference \Rightarrow needs an extra indirection
- What about function calls in expressions?
 - \rightarrow Generate the calling sequence & load the return value
 - \rightarrow Severely limits compiler's ability to reorder operations

Extending the Simple Treewalk Algorithm

Adding other operators

- Evaluate the operands, then perform the operation
- Complex operations may turn into library calls
- Handle assignment as an operator

Mixed-type expressions

- Insert conversions as needed from conversion table
- Most languages have symmetric & rational conversion tables

Typical Addition Table	+	Integer	Real	Double
	Integer	Integer	Real	Double
	Real	Real	Real	Double
	Double	Double	Double	Double

Extending the Simple Treewalk Algorithm

What about evaluation order?

- Can use commutativity & associativity to improve code
- This problem is truly hard

What about order of evaluating operands?

- 1st operand must be preserved while 2nd is evaluated
- Takes an extra register for 2nd operand
- Should evaluate more demanding operand expression first (Ershov in the 1950's, Sethi in the 1970's)

This is the Sethi-Ullman scheme: generating code during parsing

Generating Code in the Parser

Need to generate an initial IR form

- Chapter 4 talks about **Ast**s & **ILOC**
- Might generate an AST, use it for some high-level, nearsource work (type checking, optimization), then traverse it and emit a lower-level IR similar to **ILOC**

The big picture

- Recursive algorithm really works bottom-up
 - \rightarrow Actions on non-leaves occur after children are done
- Can encode same basic structure into *ad-hoc* SDT* scheme
 - → Identifiers load themselves & stack virtual register name
 - \rightarrow Operators emit appropriate code & stack resulting VR name
 - → Assignment requires evaluation to an *lvalue* or an *rvalue*
 - Some modal behavior is unavoidable

*Syntax-directed translation

Recursive Treewalk versus Ad-hoc SDT

```
expr(node) {
  int result, t1, t2;
  switch (type(node)) {
       case \times, \div, +, -:
          t1 \leftarrow expr(left child(node));
          t2 \leftarrow expr(right child(node));
          result \leftarrow NextRegister();
          emit (op(node), t1, t2, result);
          break:
       case IDENTIFIER:
          t1 \leftarrow base(node);
          t2 \leftarrow offset(node);
          result \leftarrow NextRegister();
          emit (loadAO, t1, t2, result);
          break:
      case NUMBER:
          result \leftarrow NextRegister();
          emit (loadl, val(node), none, result);
          break;
        }
       return result;
```

```
Goal :
          Expr { \$\$ = \$1;  };
          Expr PLUS Term
Expr:
          \{ t = NextRegister(); \}
           emit(add,$1,$3,t); $$ = t; }
          Expr MINUS Term {...}
          Term { \$\$ = \$1;  } ;
          Term TIMES Factor
Term:
          \{ t = NextRegister(); \}
           emit(mult,$1,$3,t); $$ = t; };
          Term DIVIDES Factor {...}
          Factor { \$\$ = \$1;  };
Factor:
          NUMBER
          \{ t = NextRegister(); \}
           emit(loadl,val($1),none, t );
           $$ = t; }
          ID
           \{ t1 = base($1); 
            t2 = offset(\$1);
            t = NextRegister();
           emit(loadAO,t1,t2,t);
           $$ = t; }
```

Evaluate *lhs* to a location
 → *lvalue* is a register ⇒ move rhs

- \rightarrow *Ivalue* is an address \Rightarrow store rhs
- If *rvalue* & *lvalue* have different types
 - → Evaluate *rvalue* to its "*natural*" type
 - \rightarrow Convert that value to the type of **lvalue*

Unambiguous scalars go into registers

Ambiguous scalars or aggregates go into memory

(an rvalue) (an lvalue)

Let hardware sort out the addresses !

Handling Assignment

Evaluate *rhs* to a value

 $lhs \leftarrow rhs$

Strategy

(just another operator)

What if the compiler cannot determine the rhs's type ?

- This is a property of the language & the specific program
- If type-safety is desired, compiler must insert a <u>run-time</u> check
- Add a *tag* field to the data items to hold type information

Code for assignment becomes more complex

```
evaluate rhs
if type(lhs) ≠ rhs.tag
    then
        convert rhs to type(lhs) or
        signal a run-time error
lhs ← rhs
```

Handling Assignment

Compile-time type-checking

- Goal is to eliminate both the check & the tag
- Determine, at compile time, the type of each subexpression
- Use compile-time types to determine if a run-time check is needed

Optimization strategy

- If compiler knows the type, move the check to compile-time
- Unless tags are needed for garbage collection, eliminate them
- If check is needed, try to overlap it with other computation

Can design the language so all checks are static

The problem with reference counting

- Must adjust the count on each pointer assignment
- Overhead is significant, relative to assignment

Code for assignment becomes

This adds 1 +, 1 -, 2 loads, & 2 stores

With extra functional units & large caches, this may become either cheap or free ...

How does the compiler handle A[i,j]?

First, must agree on a storage scheme:

Row-major order (most languages) Lay out as a sequence of consecutive rows Rightmost subscript varies fastest A[1,1], A[1,2], A[1,3], A[2,1], A[2,2], A[2,3]

Column-major order

(Fortran)

Lay out as a sequence of columns Leftmost subscript varies fastest A[1,1], A[2,1], A[1,2], A[2,2], A[1,3], A[2,3]

Indirection vectors

(Java)

Vector of pointers to pointers to ... to values Takes much more space, trades indirection for arithmetic Not amenable to analysis

Laying Out Arrays

The Concept

These have distinct & different cache behaviour

Row-major order

Column-major order

Indirection vectors

Computing an Array Address

A[i]

- @A + (i low) x sizeof(A[1])
- In general: base(A) + (i low) x sizeof(A[1])

Computing an Array Address

A[i]

- @A + (i low) x sizeof(A[1])
- In general: base(A) + (i low) x sizeof(A[1])

int A[1:10] \Rightarrow low is 1 Make low 0 for faster access (saves a -) Almost always a power of 2, known at compile-time \Rightarrow use a shift for speed

Computing an Array Address

A[i]

- @A + (i low) x sizeof(A[1])
- In general: base(A) + (i low) x sizeof(A[1])

```
What about A[i<sub>1</sub>,i<sub>2</sub>]?
```

This stuff looks expensive! Lots of implicit +, -, x ops

Row-major order, two dimensions $@A + ((i_1 - low_1) \times (high_2 - low_2 + 1) + i_2 - low_2) \times sizeof(A[1])$

Column-major order, two dimensions $@A + ((i_2 - low_2) \times (high_1 - low_1 + 1) + i_1 - low_1) \times sizeof(A[1])$

Indirection vectors, two dimensions * $(A[i_1])[i_2]$ — where $A[i_1]$ is, itself, a 1-d array reference

Optimizing Address Calculation for A[i,j]

In row-major order

where w = sizeof(A[1,1])

 $(a + (i-low_1)(high_2-low_2+1) \times w + (j - low_2) \times w$

```
Which can be factored into

@A + i \times (high_2 - low_2 + 1) \times w + j \times w

- (low_1 \times (high_2 - low_2 + 1) \times w) + (low_2 \times w)

If low_i, high<sub>i</sub>, and w are known, the last term is a constant

Define @A_0 as

@A - (low_1 \times (high_2 - low_2 + 1) \times w + low_2 \times w)
```

And len₂ as (high₂-low₂+1)

Then, the address expression becomes

(a) = (a) + (a)

Array References

What about arrays as actual parameters?

Whole arrays, as call-by-reference parameters

- Need dimension information \Rightarrow build a *dope vector*
- Store the values in the calling sequence
- Pass the address of the dope vector in the parameter slot
- Generate complete address polynomial at each reference

Some improvement is possible

- Save len_i and low_i rather than low_i and high_i
- Pre-compute the fixed terms in prologue sequence

What about call-by-value?

- Most c-b-v (call by value) languages pass arrays by reference
- This is a language design issue

What about A[12] as an actual parameter?

If corresponding parameter is a scalar, it's easy

- Pass the address or value, as needed
- Must know about both formal & actual parameter
- Language definition must force this interpretation

What is corresponding parameter is an array?

- Must know about both formal & actual parameter
- Meaning must be well-defined and understood
- Cross-procedural checking of conformability
- \Rightarrow Again, we're treading on language design issues

What about variable-sized arrays?

Local arrays dimensioned by actual parameters

- Same set of problems as parameter arrays
- Requires dope vectors (or equivalent)
 - \rightarrow dope vector at fixed offset in activation record
 - \Rightarrow Different access costs for textually similar references

This presents a lot of opportunity for a good optimizer

- Common subexpressions in the address polynomial
- Contents of dope vector are fixed during each activation
- Should be able to recover much of the lost ground
- \Rightarrow Handle them like parameter arrays

Example: Array Address Calculations in a Loop

```
DO J = 1, N

A[I,J] = A[I,J] + B[I,J]

END DO
```

• Naïve: Perform the address calculation twice

```
DO J = 1, N

R1 = @A_0 + (J \times len_1 + I) \times floatsize

R2 = @B_0 + (J \times len_1 + I) \times floatsize

MEM(R1) = MEM(R1) + MEM(R2)

END DO
```

Example: Array Address Calculations in a Loop

```
DO J = 1, N
A[I,J] = A[I,J] + B[I,J]
END DO
```

• Sophisticated: Move common calculations out of loop

```
R1 = I \times floatsize
c = len_1 \times floatsize \quad ! Compile-time constant
R2 = @A_0 + R1
R3 = @B_0 + R1
DO J = 1, N
a = J \times c
R4 = R2 + a
R5 = R3 + a
MEM(R4) = MEM(R4) + MEM(R5)
END DO
```

Example: Array Address Calculations in a Loop

DO J = 1, N A[I,J] = A[I,J] + B[I,J] END DO

Very sophisticated: Convert multiply to add (Operator Strength Reduction)

```
R1 = I \times floatsize
c = len_1 \times floatsize \ ! \ Compile-time \ constant
R2 = @A_0 + R1 ; \ R3 = @B_0 + R1
DO \ J = 1, \ N
R2 = R2 + c
R3 = R3 + c
MEM(R2) = MEM(R2) + MEM(R3)
END DO
```

See, for example, Cooper, Simpson, & Vick, "Operator Strength Reduction", ACM TOPLAS, Sept 2001