
The Procedure Abstraction

Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.

Procedure Abstraction

• Begins Chapter 6 in EAC
• The compiler must deal with interface between compile

time and run time (static versus dynamic)
 Most of the tricky issues arise in implementing “procedures”

• Issues
 Compile-time versus run-time behaviour
 Finding storage for EVERYTHING, and mapping names to

addresses
 Generating code to compute addresses that the compiler

cannot know !
 Interfaces with other programs, other languages, and the OS
 Efficiency of implementation

Where are we?

The latter half of a compiler contains more open problems,
more challenges, and more grey areas than the front half

• This is “compilation,” as opposed to “parsing” or “translation”
• Implementing promised behaviour

 What defines the meaning of the program

• Managing target machine resources
 Registers, memory, issue slots, locality, power, …
 These issues determine the quality of the compiler

Errors

Source
Code

Middle
End

Front
End

Machine
code

Back
End

IR IR

Well understood Engineering

The Procedure: Three Abstractions

• Control Abstraction
 Well defined entries & exits
 Mechanism to return control to caller
 Some notion of parameterisation (usually)

• Clean Name Space
 Clean slate for writing locally visible names
 Local names may obscure identical, non-local names
 Local names cannot be seen outside

• External Interface
 Access is by procedure name & parameters
 Clear protection for both caller & callee
 Invoked procedure can ignore calling context

• Procedures permit a critical separation of concerns

The Procedure (Realist’s View)

Procedures are the key to building large systems

• Requires system-wide contract
 Conventions on memory layout, protection, resource allocation

calling sequences, & error handling
 Must involve architecture (ISA), OS, & compiler

• Provides shared access to system-wide facilities
 Storage management, flow of control, interrupts
 Interface to input/output devices, protection facilities, timers,

synchronization flags, counters, …

• Establishes a private context
 Create private storage for each procedure invocation
 Encapsulate information about control flow & data

abstractions

The Procedure (Realist’s View)

Procedures allow us to use separate compilation

• Separate compilation allows us to build non-trivial programs
• Keeps compile times reasonable
• Lets multiple programmers collaborate
• Requires independent procedures

Without separate compilation, we would not build large
systems

The procedure linkage convention
• Ensures that each procedure inherits a valid run-time

environment and that the callers environment is restored on
return

 The compiler must generate code to ensure this happens
according to conventions established by the system

The Procedure (More Abstract View)

A procedure is an abstract structure constructed via software

Underlying hardware directly supports little of the abstraction—
it understands bits, bytes, integers, reals, and addresses, but
not:

• Entries and exits
• Interfaces
• Call and return mechanisms

 may be a special instruction to save context at point of call

• Name space
• Nested scopes

All these are established by a carefully-crafted system of
mechanisms provided by compiler, run-time system, linkage
editor and loader, and OS

Run Time versus Compile Time

These concepts are often confusing to the newcomer
• Linkages execute at run time
• Code for the linkage is emitted at compile time
• The linkage is designed long before either of these

“This issue (compile time versus run time) confuses students
more than any other issue in Comp 412”—Keith Cooper

The Procedure as a Control Abstraction

The Procedure as a Control Abstraction

Procedures have well-defined control-flow

The Algol-60 procedure call

• Invoked at a call site, with some set of actual parameters

• Control returns to call site, immediately after invocation

The Procedure as a Control Abstraction

Procedures have well-defined control-flow

The Algol-60 procedure call
• Invoked at a call site, with some set of actual parameters
• Control returns to call site, immediately after invocation

int p(a,b,c)
 int a, b, c;
{
 int d;
 d = q(c,b);
 ...
}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction

Procedures have well-defined control-flow

The Algol-60 procedure call
• Invoked at a call site, with some set of actual parameters
• Control returns to call site, immediately after invocation

int p(a,b,c)
 int a, b, c;
{
 int d;
 d = q(c,b);
 ...
}

int q(x,y)
 int x,y;
{
 return x + y;
}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction

Procedures have well-defined control-flow

The Algol-60 procedure call
• Invoked at a call site, with some set of actual parameters
• Control returns to call site, immediately after invocation

int p(a,b,c)
 int a, b, c;
{
 int d;
 d = q(c,b);
 ...
}

int q(x,y)
 int x,y;
{
 return x + y;
}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction

Procedures have well-defined control-flow

The Algol-60 procedure call
• Invoked at a call site, with some set of actual parameters
• Control returns to call site, immediately after invocation

int p(a,b,c)
 int a, b, c;
{
 int d;
 d = q(c,b);
 ...
}

int q(x,y)
 int x,y;
{
 return x + y;
}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction

Procedures have well-defined control-flow

The Algol-60 procedure call
• Invoked at a call site, with some set of actual parameters
• Control returns to call site, immediately after invocation

• Most languages allow recursion

int p(a,b,c)
 int a, b, c;
{
 int d;
 d = q(c,b);
 ...
}

int q(x,y)
 int x,y;
{
 return x + y;
}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction

Implementing procedures with this behaviour

• Requires code to save and restore a “return address”

• Must map actual parameters to formal parameters (cx, by)

• Must create storage for local variables (&, maybe, parameters)
 p needs space for d (&, maybe, a, b, & c)
 where does this space go in recursive invocations?

int p(a,b,c)
 int a, b, c;
{
 int d;
 d = q(c,b);
 ...
}

int q(x,y)
 int x,y;
{
 return x + y;
}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction

Implementing procedures with this behaviour

• Must preserve p’s state while q executes
 recursion causes the real problem here

• Strategy: Create unique location for each procedure activation
 Can use a “stack” of memory blocks to hold local storage and

return addresses

Compiler emits code that causes all this to happen at run time

int p(a,b,c)
 int a, b, c;
{
 int d;
 d = q(c,b);
 ...
}

int q(x,y)
 int x,y;
{
 return x + y;
}

…
s = p(10,t,u);
…

The Procedure as a Name Space

The Procedure as a Name Space

Each procedure creates its own name space

• Any name (almost) can be declared locally
• Local names obscure identical non-local names
• Local names cannot be seen outside the procedure

 Nested procedures are “inside” by definition
• We call this set of rules & conventions “lexical scoping”

Examples

• C has global, static, local, and block scopes (Fortran-like)
 Blocks can be nested, procedures cannot

• Scheme has global, procedure-wide, and nested scopes (let)
 Procedure scope (typically) contains formal parameters

The Procedure as a Name Space

Why introduce lexical scoping?
• Provides a compile-time mechanism for binding “free” variables
• Simplifies rules for naming & resolves conflicts

How can the compiler keep track of all those names?

The Problem
• At point p, which declaration of x is current?
• At run-time, where is x found?
• As parser goes in & out of scopes, how does it delete x?

The Answer
• Lexically scoped symbol tables (see § 5.7.3)

Lexically-scoped Symbol Tables

The problem
• The compiler needs a distinct record for each declaration
• Nested lexical scopes admit duplicate declarations

The interface
• insert(name, level) – creates record for name at level
• lookup(name, level) – returns pointer or index
• delete(level) – removes all names declared at level

Many implementation schemes have been proposed (see § B.4)

• We’ll stay at the conceptual level
• Hash table implementation is tricky, detailed, & fun

Symbol tables are compile-time structures the compiler use to resolve references to names.
We’ll see the corresponding run-time structures that are used to establish addressability later.

§ 5.7 in EaC

Example

procedure p {
int a, b, c
procedure q {

int v, b, x, w
procedure r {

int x, y, z
….

}
procedure s {

int x, a, v
…

}
… r … s

}
… q …

}

B0: {
int a, b, c

B1: {
int v, b, x, w

B2: {
int x, y, z
….

}
B3: {

int x, a, v
…

}
…

}
…

}

Lexically-scoped Symbol Tables

High-level idea
• Create a new table for each scope
• Chain them together for lookup

x

y

z

v

b
x
w

a

b

c

•

r

q

p
...

...

procedure p {
int a, b, c
procedure q {

int v, b, x, w
procedure r {

int x, y, z
….

}
procedure s {

int x, a, v
…

}
… r … s

}
… q …

}

Lexically-scoped Symbol Tables

High-level idea
• Create a new table for each scope
• Chain them together for lookup

“Sheaf of tables” implementation

• insert() may need to create table

• it always inserts at current level

• lookup() walks chain of tables &
 returns first occurrence of name

• delete() throws away table for level
 p, if it is top table in the chain

If the compiler must preserve the
table (for, say, the debugger), this
idea is actually practical.

Individual tables can be hash tables.

x

y

z

v

b
x
w

a

b

c

•

r

q

p
...

...

Implementing Lexically Scoped Symbol Tables

Stack organization

a
b
c
v
b
x
w
x
y
z

growth

Implementation

• insert () creates new level
pointer if needed and
inserts at nextFree

• lookup () searches linearly
from nextFree–1 forward

• delete () sets nextFree to
the equal the start
location of the level
deleted.

Advantage

• Uses much less space
Disadvantage

• Lookups can be expensive
p (level 0)

q (level 1)

r (level 2)

nextFree

The Procedure as an External Interface

The Procedure as an External Interface

OS needs a way to start the program’s execution

• Programmer needs a way to indicate where it begins
 The “main” procedure in most languages

• When user invokes “ls” at a command line
 OS finds the executable

 OS creates a process and arranges for it to run “ls”

 “ls” is code from the compiler, linked with run-time system

 Starts the run-time environment & calls “main”

 After main, it shuts down run-time environment & returns

• When “ls” needs system services
 It makes a system call, such as fopen()

UNIX/Linux
specific discussion

Where Do All These Variables Go?

Automatic & Local
• Keep them in the procedure activation record or in a register
• Automatic  lifetime matches procedure’s lifetime

Static
• Procedure scope  storage area affixed with procedure name

 &_p.x

• File scope  storage area affixed with file name
• Lifetime is entire execution

Global
• One or more named global data areas
• One per variable, or per file, or per program, …
• Lifetime is entire execution

Placing Run-time Data Structures

Classic Organization

• Code, static, & global data have known size

 Use symbolic labels in the code

• Heap & stack both grow & shrink over time

• This is a virtual address space

• Better utilization if
 stack & heap grow
 toward each other

• Very old result (Knuth)

• Code & data separate or
 interleaved

• Uses address space,
 not allocated memory

C
o
d
e

S G
t l
a & o
t b
i a
c l

S
t
a
c
k

H
e
a
p

Single Logical Address Space
0 high

How Does This Really Work?

The Big Picture

C
o
d
e

S G
t l
a & o
t b
i a
c l

H
e
a
p

S
t
a
c
k

C
o
d
e

S G
t l
a & o
t b
i a
c l

H
e
a
p

S
t
a
c
k

C
o
d
e

S G
t l
a & o
t b
i a
c l

 H
e
a
p

S
t
a
c
k

...

...

Hardware’s
view

Compiler’s
view

OS’s
view

Physical address
space_

virtual address
spaces

0 high

C
o
d
e

S G
t l
a & o
t b
i a
c l

H
e
a
p

S
t
a
c
k

Where Do Local Variables Live?

A Simplistic model
• Allocate a data area for each distinct scope
• One data area per “sheaf” in scoped table

What about recursion?
• Need a data area per invocation (or activation) of a scope
• We call this the scope’s activation record
• The compiler can also store control information there !

More complex scheme
• One activation record (AR) per procedure instance
• All the procedure’s scopes share a single AR (may share space)

• Static relationship between scopes in single procedure

Used this way, “static” means knowable at
compile time (and, therefore, fixed).

Translating Local Names

How does the compiler represent a specific instance of x ?

• Name is translated into a static coordinate
 < level,offset > pair
 “level” is lexical nesting level of the procedure
 “offset” is unique within that scope

• Subsequent code will use the static coordinate to generate
addresses and references

• “level” is a function of the table in which x is found
 Stored in the entry for each x

• “offset” must be assigned and stored in the symbol table
 Assigned at compile time
 Known at compile time
 Used to generate code that executes at run-time

Storage for Blocks within a Single Procedure

• Fixed length data can always be at a
constant offset from the beginning of a
procedure

 In our example, the a declared at level 0
will always be the first data element,
stored at byte 0 in the fixed-length data
area

 The x declared at level 1 will always be
the sixth data item, stored at byte 20 in
the fixed data area

 The x declared at level 2 will always be
the eighth data item, stored at byte 28 in
the fixed data area

 But what about the a declared in the
second block at level 2?

B0: {
int a, b, c

B1: {
int v, b, x, w

B2: {
int x, y, z
….

}
B3: {

int x, a, v
…

}
…

}
…

}

Variable-length Data

Arrays
 If size is fixed at compile time, store in

fixed-length data area
 If size is variable, store descriptor in

fixed length area, with pointer to
variable length area

 Variable-length data area is assigned at
the end of the fixed length area for
block in which it is allocated

B0: {
int a, b
… assign value to

a
B1: {

int v(a), b, x
B2: {

int x, y(8)
….

}

a b v b x x y(8) v(a)

Variable-length dataIncludes variable length data for
all blocks in the procedure …

Activation Record Basics

parameters

register
save area

return value

return address

addressability

caller’s ARP

local
variables

ARP

Space for parameters to
the current routine

Saved register contents

If function, space for
return value

Address to resume caller

Help with non-local
access

To restore caller’s AR on a
return

Space for local values &
variables (including spills)

One AR for each invocation of a procedure

Activation Record Details

How does the compiler find the variables?
• They are at known offsets from the AR pointer

• The static coordinate leads to a “loadAI” operation
 Level specifies an ARP, offset is the constant

Variable-length data
• If AR can be extended, put it below local variables
• Leave a pointer at a known offset from ARP
• Otherwise, put variable-length data on the heap

Initializing local variables
• Must generate explicit code to store the values
• Among the procedure’s first actions

load
address
immediate

Activation Record Details

Where do activation records live?

• If lifetime of AR matches lifetime of invocation, AND

• If code normally executes a “return”
 Keep ARs on a stack

• If a procedure can outlive its caller, OR
• If it can return an object that can reference its execution

state
 ARs must be kept in the heap

• If a procedure makes no calls
 AR can be allocated statically

Efficiency prefers static, stack, then heap

C
o
d
e

S G
t l
a & o
t b
i a
c l

H
e
a
p

S
t
a
c
k

Yes! This stack.

Communicating Between Procedures

Most languages provide a parameter passing mechanism

 Expression used at “call site” becomes variable in callee

Two common binding mechanisms

• Call-by-reference passes a pointer to actual parameter
 Requires slot in the AR (for address of parameter)
 Multiple names with the same address?

• Call-by-value passes a copy of its value at time of call
 Requires slot in the AR
 Each name gets a unique location (may have same value)

 Arrays are mostly passed by reference, not value

• Can always use global variables …

call fee(x,x,x);

Establishing Addressability

Must create base addresses
• Global & static variables

 Construct a label by mangling names (i.e., &_fee)

• Local variables
 Convert to static data coordinate and use ARP + offset

• Local variables of other procedures
 Convert to static coordinates
 Find appropriate ARP

 Use that ARP + offset { Must find the right AR

 Need links to nameable ARs

Establishing Addressability

procedure p {
int a, b, c
procedure q {

int v, b, x, w
procedure r {

int x, y, z
….

}
procedure s {

int x, a, v
…

c
}
… r … s

}
… q …

}

access to c

Establishing Addressability

Using access links
• Each AR has a pointer to AR of lexical ancestor
• Lexical ancestor need not be the caller

• Reference to <p,16> runs up access link chain to p
• Cost of access is proportional to lexical distance

parameters

register
save area

return value

return address

access link

caller’s ARP

local
variables

ARP

parameters

register
save area

return value

return address

access link

caller’s ARP

local
variables

parameters

register
save area

return value

return address

access link

caller’s ARP

local
variables

Some setup cost
on each call

Activation
Record
Pointer

s
q p

Establishing Addressability

Using access links

Access & maintenance cost varies with level
All accesses are relative to ARP (r0)

Assume
• Current lexical level is 2
• Access link is at ARP - 4

Maintaining access link
• Calling level k+1
 Use current ARP as link
• Calling level j < k
 Find ARP for j –1
 Use that ARP as link

Procedure Linkages

How do procedure calls actually work?
• At compile time, callee may not be available for inspection

 Different calls may be in different compilation units
 Compiler may not know system code from user code
 All calls must use the same protocol

Compiler must use a standard sequence of operations
• Enforces control & data abstractions
• Divides responsibility between caller & callee

Usually a system-wide agreement (for interoperability)

Procedure Linkages

Standard procedure linkage

procedure p

prolog

epilog

pre-call

post-return

procedure q

prolog

epilog

Procedure has

• standard prolog

• standard epilog

Each call involves a

• pre-call sequence

• post-return sequence

These are completely
predictable from the call
site  depend on the
number & type of the
actual parameters

Procedure Linkages

Pre-call Sequence
• Sets up callee’s basic AR

• Helps preserve its own environment

The Details
• Allocate space for the callee’s AR

 except space for local variables

• Evaluates each parameter & stores value or address
• Saves return address, caller’s ARP into callee’s AR

• If access links are used
 Find appropriate lexical ancestor & copy into callee’s AR

• Save any caller-save registers
 Save into space in caller’s AR

• Jump to address of callee’s prolog code

Procedure Linkages

Post-return Sequence
• Finish restoring caller’s environment
• Place any value back where it belongs

The Details
• Copy return value from callee’s AR, if necessary
• Free the callee’s AR

• Restore any caller-save registers
• Restore any call-by-reference parameters to registers, if

needed
 Also copy back call-by-value/result parameters

• Continue execution after the call

Procedure Linkages

Prolog Code

• Finish setting up the callee’s environment
• Preserve parts of the caller’s environment that will be

disturbed

The Details

• Preserve any callee-save registers
• Allocate space for local data

 Easiest scenario is to extend the AR

• Find any static data areas referenced in the callee
• Handle any local variable initializations

With heap allocated AR,
may need to use a
separate heap object for
local variables

Procedure Linkages

Epilog Code
• Wind up the business of the callee
• Start restoring the caller’s environment

The Details
• Store return value? No, this happens on the return

statement
• Restore callee-save registers
• Free space for local data, if necessary (on the heap)
• Load return address from AR

• Restore caller’s ARP

• Jump to the return address

If ARs are stack allocated,
this may not be necessary.
(Caller can reset stacktop
to its pre-call value.)

	The Procedure Abstraction Part I: Basics
	Procedure Abstraction
	Where are we?
	The Procedure: Three Abstractions
	The Procedure (Realist’s View)
	Slide 6
	The Procedure (More Abstract View)
	Run Time versus Compile Time
	Slide 9
	The Procedure as a Control Abstraction
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	The Procedure as a Name Space
	Slide 19
	Slide 20
	Slide 23
	The Procedure as an External Interface
	Where Do All These Variables Go?
	Translating Local Names
	Activation Record Details
	Establishing Addressability
	Example
	Procedure Linkages
	Slide 45
	Slide 46

