Compiling Techniques
Lecture 4: Automatic Lexer Generation
(EaC§2.4)

Christophe Dubach

27 September 2016
Table of contents

1 Finite State Automata for Regular Expression
 - Finite State Automata
 - Non-determinism

2 From Regular Expression to Generated Lexer
 - Regular Expression to NFA
 - From NFA to DFA

3 Final Remarks
• Starting from a collection of regular expressions (RE) we automatically generate a Lexer.

• We use *finite state automata* (FSA) for the construction
Definition: finite state automata

A finite state automata is defined by:

- \(S \), a finite set of states
- \(\Sigma \), an alphabet, or character set used by the recogniser
- \(\delta(s, c) \), a transition function (takes a state and a character and returns new state)
- \(s_0 \), the initial or start state
- \(S_F \), a set of final states (a stream of characters is accepted iif the automata ends up in a final state)
Finite State Automata for Regular Expression

Example: register names

```
register ::= 'r' ('0' | '1' | ... | '9') ( '0' | '1' | ... | '9' )* 
```

The RE (Regular Expression) corresponds to a recogniser (or finite state automata):

![Finite State Automata Diagram]

- Initial state: s_0
- Final states: s_1, s_2
- Transition on 'r': $s_0 \rightarrow s_1$
- Transition on '0', '1', ..., '9': $s_1 \rightarrow s_2$

Christophe Dubach
Compiling Techniques
Finite State Automata (FSA) operation:
- Start in state s_0 and take transitions on each input character
- The FSA accepts a word x iff x leaves it in a final state (s_2)

Examples:
- **r17** takes it through s_0, s_1, s_2 and accepts
- **r** takes it through s_0, s_1 and fails
- **a** starts in s_0 and leads straight to failure
Table encoding and skeleton code

To be useful a recogniser must be turned into code

Table encoding RE

| \(\delta \) | 'r' | '0' | '1' | ... | '9' | others |
|---------------|-----|-----|-----|------|-------|
| \(s_0 \) | \(s_1 \) | error | error |
| \(s_1 \) | error | \(s_2 \) | error |
| \(s_2 \) | error | \(s_2 \) | error |

Skeleton recogniser

\[
\begin{align*}
\text{c} &= \text{next character} \\
\text{state} &= s_0 \\
\text{while} \ (c \neq \text{EOF}) \\
\text{state} &= \delta(\text{state}, c) \\
\text{c} &= \delta(\text{state}, c) \\
\text{if} \ (\text{state final}) \\
\text{return} \ \text{success} \\
\text{else} \\
\text{return} \ \text{error}
\end{align*}
\]
Deterministic Finite Automaton

Each RE corresponds to a Deterministic Finite Automaton (DFA). However, it might be hard to construct directly.

What about an RE such as
\[(a|b)^*abb\]?

This is a little different:

- \(s_0\) has a transition on \(\epsilon\), which can be followed without consuming an input character
- \(s_1\) has two transitions on \(a\)
- This is a Non-deterministic Finite Automaton (NFA)
Non-deterministic vs deterministic finite automata

Deterministic finite state automata (DFA):
- All edges leaving the same node have distinct labels
- There is no ϵ transition

Non-deterministic finite state automata (NFA):
- Can have multiple edges with the same label leaving from the same node
- Can have ϵ transition
- This means we might have to backtrack
Automatic Lexer Generation

It is possible to systematically generate a lexer for any regular expression. This can be done in three steps:

1. regular expression (RE) \rightarrow non-deterministic finite automata (NFA)
2. NFA \rightarrow deterministic finite automata (DFA)
3. DFA \rightarrow generated lexer
1st step: RE → NFA (Ken Thompson, CACM, 1968)

"x"

\[S_0 \xrightarrow{\epsilon} S_1 \]

\[M \]

\[S_0 \xrightarrow{M} S_1 \]

\[M \mid N \]

\[S_0 \xrightarrow{\epsilon} S_1 \xrightarrow{\epsilon} S_2 \xrightarrow{\epsilon} S_3 \xrightarrow{N} S_4 \xrightarrow{\epsilon} S_5 \xrightarrow{\epsilon} S_0 \]

\[M \star \]

\[S_0 \xrightarrow{\epsilon} S_1 \xrightarrow{\epsilon} S_2 \xrightarrow{\epsilon} S_3 \]

\[M^+ \]

\[S_0 \xrightarrow{\epsilon} S_1 \xrightarrow{M} S_2 \xrightarrow{\epsilon} S_3 \]
Example: $a(b|c)^*$

A human would do:

\[
\begin{array}{c}
S_0 \\
\downarrow a \\
S_1
\end{array}
\]
Executing a non-deterministic finite automata requires backtracking, which is inefficient. To overcome this, we need to construct a DFA from the NFA.

The main idea:

- We build a DFA which has one state for each set of states the NFA could end up in.
- A set of state is final in the DFA if it contains the final state from the NFA.
- Since the number of states in the NFA is finite (n), the number of possible sets of states is also finite (maximum 2^n).
Assuming the state of the NFA are labelled s_i and the states of the DFA we are building are labelled q_i. We have two key functions:

- \(\text{reachable}(s_i, \alpha) \) returns the set of states reachable from s_i by consuming character α
- \(\epsilon\)-closure(s_i) returns the set of states reachable from s_i by ϵ (\textit{e.g.}, without consuming a character)
The Subset Construction algorithm (Fixed point iteration)

\[q_0 = \epsilon\text{-closure}(s_0); \ Q = \{q_0\}; \ \text{add} \ q_0 \ \text{to} \ \text{WorkList} \]

\[\text{while} \ (\text{WorkList} \ \text{not empty}) \]

\[\text{remove} \ q \ \text{from} \ \text{WorkList} \]

\[\text{for each} \ \alpha \in \Sigma \]

\[\text{subset} = \epsilon\text{-closure}(\text{reachable}(q, \alpha)) \]

\[\delta(q, \alpha) = \text{subset} \]

\[\text{if} \ (\text{subset} \notin Q) \ \text{then} \]

\[\text{add} \ \text{subset} \ \text{to} \ Q \ \text{and} \ \text{to} \ \text{WorkList} \]

The algorithm (in English)

- Start from start state \(s_0 \) of the NFA, compute its \(\epsilon \)-closure
- Build subset from all states reachable from \(q_0 \) for character \(\alpha \)
- Add this subset to the transition table/function \(\delta \)
- If the subset has not been seen before, add it to the worklist
- Iterate until no new subset are created
Informal proof of termination

- Q contains no duplicates (test before adding)
- similarly we will never add twice the same subset to the worklist
- bounded number of states; maximum 2^n subsets, where n is number of state in NFA

\Rightarrow the loop halts

End result

- S contains all the reachable NFA states
- It tries each symbol in each s_i
- It builds every possible NFA configuration

\Rightarrow Q and δ form the DFA
Finite State Automata for Regular Expression
From Regular Expression to Generated Lexer
Final Remarks

From Regular Expression to NFA
From NFA to DFA

NFA → DFA

\(a(b|c)^* \)

\[\epsilon\text{-closure}(\text{reachable}(q, \alpha)) \]

<table>
<thead>
<tr>
<th>NFA states</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(s_0)</td>
<td>(q_1)</td>
<td>none</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(s_1, s_2, s_3, s_4, s_6, s_9)</td>
<td>none</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(s_5, s_8, s_9, s_3, s_4, s_6)</td>
<td>none</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(s_7, s_8, s_9, s_3, s_4, s_6)</td>
<td>none</td>
<td>(q_2)</td>
</tr>
</tbody>
</table>

Christophe Dubach
Compiling Techniques
Resulting DFA for \(a(b|c)^* \)

- Smaller than the NFA
- All transitions are deterministic (no need to backtrack!)
- Could be even smaller
 (see EaC §2.4.4 Hopcroft’s Algorithm for minimal DFA)
- Can generate the lexer using skeleton recogniser seen earlier
Poor language design can complicate lexing

- **PL/I** does not have reserved words (keywords):

  ```plaintext
  if then then then = else; else else = then
  ```

- **In Fortran & Algol68** blanks (whitespaces) are insignificant:

  ```plaintext
  do 10 i = 1,25 ≅ do 10 i = 1,25 (loop)
  do 10 i = 1.25 ≅ do10i = 1.25 (assignment)
  ```

- **In C,C++,Java** string constants can have special characters:

 newline, tab, quote, comment delimiters, ...
Building Lexer

The important point:

- All this technology lets us automate lexer construction
- Implementer writes down regular expressions
- Lexer generator builds NFA, DFA and then writes out code
- This reliable process produces fast and robust lexers

For most modern language features, this works:

- As a language designer you should think twice before introducing a feature that defeats a DFA-based lexer
- The ones we have seen (e.g., insignificant blanks, non-reserved keywords) have not proven particularly useful or long lasting
Next lecture

Parsing:
- Context-Free Grammars
- Dealing with ambiguity
- Recursive descent parser