Compiling Techniques

Lecture 3: Introduction to Lexical Analysis

Christophe Dubach

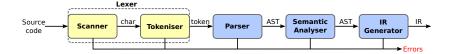
23 September 2016

Reminder

Action

Create an account and subscribe to the course on piazza.

Coursework


Starts this afternoon (3pm or 4.30pm)

- Coursework description is updated regularly; check frequently or "watch" http://bitbucket.org/cdubach/ct-16-17/
- Register for a bitbucket account and fill in the Google form (instructions online)

```
(https://goo.gl/forms/PVAhObmCZOqICZU92)
```

Groups have not yet been assigned. Let's do it now!

The Lexer

- Maps character stream into words the basic unit of syntax
- Assign a syntactic category to each work (part of speech)
 - x = x + y; becomes ID(x) EQ ID(x) PLUS ID(y) SC
 - word \cong lexeme
 - syntactic category ≅ part of speech
 - In casual speech, we call the pair a token
- Typical tokens: number, identifier, +, -, new, while, if, ...
- Scanner eliminates white space (including comments)

Table of contents

- Languages and Syntax
 - Context-free Language
 - Regular Expression
 - Regular Languages
- 2 Lexical Analysis
 - Building a Lexer
 - Ambiguous Grammar

Context-free Language

Context-free syntax is specified with a grammar

- ullet SheepNoise o SheepNoise baa | baa
- This grammar defines the set of noises that a sheep makes under normal circumstances

It is written in a variant of BackusNaur Form (BNF)

Formally, a grammar G = (S,N,T,P)

- S is the start symbol
- N is a set of non-terminal symbols
- T is a set of terminal symbols or words
- ullet P is a set of productions or rewrite rules (P:N o N \cup T)

Example

```
\begin{array}{l} S = \mbox{ goal } \\ T = \{\mbox{number, id,+,-}\} \\ N = \{\mbox{goal, expr, term, op}\} \\ P = \{1,2,3,4,5,6,7\} \end{array}
```

- This grammar defines simple expressions with addition & subtraction over "number" and "id"
- This grammar, like many, falls in a class called "context-free grammars", abbreviated CFG

Regular Expression

Grammars can often be simplified and shortened using an augmented BNF notation where:

- x* is the Kleene closure : zero or more occurrences of x
- x+ is the positive closure : one or more occurrences of x
- [x] is an option: zero or one occurrence of x

Example: identifier syntax

```
identifier ::= letter (letter | digit)*
digit ::= "0" | ... | "9" | letter ::= "a" | ... | "z" | "A" | ... | "Z"
```

Context-free Language Regular Expression Regular Languages

Exercise: write the grammar of signed natural number

Regular Language

Definition

A language is regular if it can be expressed with a single regular expression or with multiple non-recursive regular expressions.

- Regular languages can used to specify the words to be translated to tokens by the lexer.
- Regular languages can be recognised with finite state machine.
- Using results from automata theory and theory of algorithms, we can automatically build recognisers from regular expressions.

Regular Expression

Regular language to program

Given the following:

- c is a lookahead character;
- next() consumes the next character;
- error () quits with an error message; and
- first (exp) is the set of initial characters of exp.

Regular language to program

Then we can build a program to recognise a regular language if the grammar is left-parsable.

RE	pr(RE)
"x"	if $(c == 'x') next() else error();$
(exp)	pr(exp);
[exp]	if (c in first (exp)) pr(exp);
exp*	while (c in first (exp)) pr(exp);
exp+	pr(exp); while (c in first (exp)) pr(exp);
$fact_1 \dots fact_n$	pr(fact1); ; pr(factn);
$term_1 \dots term_n $	<pre>switch (c) { case c in first(term1) : pr(term1); case</pre>

Definition: left-parsable

A grammar is left-parsable if:

t Grammar is left parsable in:	
$term_1 \dots term_n$	The terms do not share any initial symbols.
$fact_1 \dots fact_n$	If fact _i contains the empty symbol then fact _i
	and $fact_{i+1}$ do not share any common initial
	symbols.
[exp], $exp*$	The initial symbols of <i>exp</i> cannot contain a sym-
	bol which belong to the first set of an expression

following exp.

Example: Recognising identifiers

```
void ident() {
  if (c is in [a-zA-Z])
    letter();
  else
    error();
  while (c is in [a-zA-Z0-9]) {
    switch (c) {
      case c is in [a-zA-Z] : letter();
      case c is in [0-9] : digit();
      default : error();
void letter() {...}
void digit() {...}
```

Example: Simplified Java version

```
void ident() {
  if (Character.isLetter(c))
    next();
  else
    error();
  while (Character.isLetterOrDigit(c))
    next();
}
```

Role of lexical analysiser

The main role of the lexical analyser (or lexer) is to read a bit of the input and return a lexeme (or token).

```
class Lexer {
   public Token nextToken() {
      // return the next token, ignoring white spaces
   }
   ...
}
```

White spaces are usually ignored by the lexer. White spaces are:

- white characters (tabulation, newline, ...)
- comments (any character following "//" or enclosed between "/*" and "*/"

What is a token?

A token consists of a token class and other additional information.

```
\begin{array}{lll} \text{Example: some token classes} \\ & \text{IDENTIFIER} & \rightarrow \text{ foo , main , cnt , } \dots \\ & \text{NUMBER} & \rightarrow 0 \text{ , } -12 \text{ , } 1000 \text{ , } \dots \\ & \text{STRING\_LITERAL} & \rightarrow \text{ "Hello world !" , "a" , } \dots \\ & \text{EQ} & \rightarrow = \\ & \text{ASSIGN} & \rightarrow = \\ & \text{PLUS} & \rightarrow + \\ & \text{LPAR} & \rightarrow \text{ ( } \\ & \dots & \rightarrow & \dots \end{array}
```

```
class Token {
  TokenClass tokenClass; // Java enumeration
  String data; // stores number or string
  Position pos; // line/column number in source
}
```

Example

RBRA

```
Given the following C program:
int foo(int i) {
  return i+2;
}
the lexer will return:
INT IDENTIFIER("foo") LPAR INT IDENTIFIER("i") RPAR LBRA
```

RETURN IDENTIFIER ("i") PLUS NUMBER ("2") SEMICOLON

A Lexer for Simple Arithmetic Expressions

```
Example: BNF syntax

identifier ::= letter (letter | digit)*
digit ::= "0" | ... | "9"
letter ::= "a" | ... | "z" | "A" | ... | "Z"
number ::= digit+
plus ::= "+"
minus ::= "-"
```

Example: token definition

```
class Token {
    enum TokenClass {
        IDENTIFIER
        NUMBER.
        PLUS.
        MINUS.
    // fields
    final TokenClass tokenClass;
    final String data;
    final Position position;
    // constructors
    Token(TokenClass tc) {...}
    Token(TokenClass tc, String data) {...}
```

Example: tokeniser implementation

```
class Tokeniser {
  Scanner scanner:
 Token next() {
    char c = scanner.next();
    // skip white spaces
    if (Character.isWhitespace(c)) return next();
    if (c == '+') return new Token(TokenClass.PLUS);
    if (c == '-') return new Token(TokenClass.MINUS);
    // identifier
    if (Character.isLetter(c)) {
      StringBuilder sb = new StringBuilder();
      sb.append(c);
      c = scanner.peek();
      while (Character.isLetterOrDigit(c)) {
        sb.append(c);
        scanner.next();
        c = scanner.peek();
      return new Token(TokenClass.IDENTIFIER, sb.toString());
```

Example: continued

```
// number
if (Character.isDigit(c)) {
   StringBuilder sb = new StringBuilder();
   sb.append(c);
   c = scanner.peek();
   while (Character.isDigit(c)) {
      sb.append(c);
      scanner.next();
      c = scanner.peek();
   }
   return new Token(TokenClass.NUMBER, sb.toString());
}
```

Some grammars are ambiguous.

Example 1

```
comment ::= "/*" .* "*/" | "//" .* NEWLINE div ::= "/"
```

Solution:

Longest matching rule

The lexer should produce the longest lexeme that corresponds to the definition.

coursework hint: use peek ahead function from the Scanner

Some grammars are ambiguous.

Example 2

Solution:

Delay to parsing stage

Remove the ambiguity and deal with it during parsing

Next lecture

Automatic Lexer Generation