Compiling Techniques

Lecture 3: Introduction to Lexical Analysis

Christophe Dubach

23 September 2016

Christophe Dubach



Reminder

Create an account and subscribe to the course on piazza.

Christophe Dubach



Coursework

Starts this afternoon (3pm or 4.30pm)
@ Coursework description is updated regularly; check frequently
or “watch” http://bitbucket.org/cdubach/ct-16-17/

@ Register for a bitbucket account and fill in the Google form
(instructions online)
(https://goo.gl/forms/PVAhObmCZ0qICZU92)

@ Groups have not yet been assigned. Let's do it now!

Christophe Dubach


http://bitbucket.org/cdubach/ct-16-17/
https://goo.gl/forms/PVAh0bmCZOqICZU92

The Lexer

Lexer

Source < ]char [ L token[ Parser ] AST, f S ic ] AST f IR IR
code _.( 1 J l ) l l J l Anallyser J l Genelrator ]_’
| |

Errors

@ Maps character stream into words — the basic unit of syntax

@ Assign a syntactic category to each work (part of speech)

o x = x + y; becomes ID(x) EQ ID(x) PLUS ID(y) SC
o word = lexeme

e syntactic category = part of speech

e In casual speech, we call the pair a token

@ Typical tokens: number, identifier, +, —, new, while, if, ...

@ Scanner eliminates white space (including comments)

Christophe Dubach



Table of contents

@ Languages and Syntax
@ Context-free Language
@ Regular Expression
@ Regular Languages

@ Lexical Analysis
@ Building a Lexer
@ Ambiguous Grammar

Christophe Dubach



Regular Expression
Regular Languages

Context-free Language

Context-free syntax is specified with a grammar
@ SheepNoise — SheepNoise baa | baa

@ This grammar defines the set of noises that a sheep makes
under normal circumstances

It is written in a variant of BackusNaur Form (BNF)

Formally, a grammar G = (S,N,T,P)
@ S is the start symbol
@ N is a set of non-terminal symbols
@ T is a set of terminal symbols or words

e P is a set of productions or rewrite rules (P:N — N U T)

Christophe Dubach



Regular Expression
Regular Languages

Example

1 | goal — expr
§ expr _T :(rpn: op term S = goal
T = {number,id,+,—}
4 |term — number
5 | id N = {goal ,expr, term,op}
6 |op N P=4{1,2,3,4,5,6,7}
7 | —

@ This grammar defines simple expressions with addition &
subtraction over “number” and “id"

@ This grammar, like many, falls in a class called “context-free
grammars”’, abbreviated CFG

Christophe Dubach



Context-free Language

Regular Languages

Regular Expression

Grammars can often be simplified and shortened using an
augmented BNF notation where:

@ xx is the Kleene closure : zero or more occurrences of x
@ x+ is the positive closure : one or more occurrences of x

@ [x] is an option: zero or one occurrence of x

Example: identifier syntax

identifier ::= letter (letter | digit)x
digit ="0" | ... | "9
letter - | ‘ " | A" | ‘ ngn

Christophe Dubach



Context-free Language

Regular Languages

Exercise: write the grammar of signed natural number

Christophe Dubach



Context-free Language
Regular Expression

Regular Language

Definition
A language is regular if it can be expressed with a single regular
expression or with multiple non-recursive regular expressions.

@ Regular languages can used to specify the words to be
translated to tokens by the lexer.

@ Regular languages can be recognised with finite state machine.

@ Using results from automata theory and theory of algorithms,
we can automatically build recognisers from regular
expressions.

Christophe Dubach



Context-free Language
Regular Expression

Regular language to program

Given the following:
@ c is a lookahead character;
@ next() consumes the next character;
@ error () quits with an error message; and

@ first (exp) is the set of initial characters of exp.

Christophe Dubach



Context-free Language
Regular Expression

Regular language to program

Then we can build a program to recognise a regular language if the
grammar is left-parsable.

RE pr(RE)
“x'! if (c =='x") next() else error ();
(exp) pr(exp);
[exp] if (c in first (exp)) pr(exp);
exp* while (c in first (exp)) pr(exp);
exp+ pr(exp); while (c in first (exp)) pr(exp);
facty ... fact, pr(factl); ... ; pr(factn);
switch (c) {
case ¢ in first(terml) : pr(terml);
" ¢ case ... Do ;
ermy| ... [term, case c in first(termn) : pr(termn);
default : error();
}

Christophe Dubach



Context-free Language
Regular Expression

Definition: left-parsable

A grammar is left-parsable if:
termy|. .. |term, | The terms do not share any initial symbols.
fact; . .. fact, If fact; contains the empty symbol then fact;
and factj; 1 do not share any common initial
symbols.
[exp], expx The initial symbols of exp cannot contain a sym-
bol which belong to the first set of an expression
following exp.

Christophe Dubach



Context-free Language
Regular Expression

Example: Recognising identifiers

void ident () {
if (c is in [a—zA-Z])
letter ();
else
error ();
while (c is in [a—zA-Z0-9]) {
switch (c) {

case c is in [a—zA-Z] : letter ();
case c is in [0—9] : digit();
default : error();

}
}
¥
void letter () {...}
void digit() {...}

Christophe Dubach



Context-free Language
Regular Expression

Example: Simplified Java version

void ident () {
if (Character.islLetter(c))
next ();
else
error ();
while (Character.isLetterOrDigit(c))
next ();

Christophe Dubach



Ambiguous Grammar

Role of lexical analysiser

The main role of the lexical analyser (or lexer) is to read a bit of
the input and return a lexeme (or token).

class Lexer {
public Token nextToken() {
// return the next token, ignoring white spaces

}
}

White spaces are usually ignored by the lexer. White spaces are:

@ white characters (tabulation, newline, ...)

e comments (any character following "//" or enclosed between
H/*H ar]d H*/H

Christophe Dubach



Ambiguous Grammar

What is a token?

A token consists of a token class and other additional information.

Example: some token classes

IDENTIFIER
NUMBER
STRING_LITERAL
EQ

ASSIGN

PLUS

LPAR

foo, main, cnt,
0, —12, 1000,
"Hello world!”, "a",

T
Lt

class Token {
TokenClass tokenClass; // Java enumeration
String data; // stores number or string
Position pos; // line/column number in source

Christophe Dubach



Ambiguous Grammar

Example

Given the following C program:

int foo(int i) {
return i-+2;
}

the lexer will return:

INT IDENTIFIER(” foo”) LPAR INT IDENTIFIER(" i") RPAR LBRA
RETURN IDENTIFIER(" i") PLUS NUMBER("2") SEMICOLON
RBRA

Christophe Dubach



Ambiguous Grammar

A Lexer for Simple Arithmetic Expressions

Example: BNF syntax

identifier ::= letter (letter | digit)x

digit = "0" | ... | "9

letter = "a” | ... | "z" | AT | .. | 2T
number = digit+

plus o= "4

minus ="

Christophe Dubach



Ambiguous Grammar

Example: token definition

class Token {

enum TokenClass {

IDENTIFIER
NUMBER,
PLUS,
MINUS,

b

// fields

final TokenClass tokenClass;
final String data;
final Position position;

// constructors
Token(TokenClass tc) {...}
Token(TokenClass tc, String data) {...}

v

Christophe Dubach




Ambiguous Grammar

Example: tokeniser implementation

class Tokeniser {

Scanner scanner;
Token next() {
char ¢ = scanner.next();

// skip white spaces
if (Character.isWhitespace(c)) return next();

if (c

( '+') return new Token(TokenClass.PLUS);
if (c -

) return new Token(TokenClass.MINUS);

// identifier
if (Character.isLetter(c)) {
StringBuilder sb = new StringBuilder ();
sb.append(c);
c = scanner.peek ();
while (Character.isLetterOrDigit(c)) {
sb.append(c);
scanner.next ();
c = scanner.peek();

return new Token(TokenClass.IDENTIFIER, sb.toString());




Ambiguous Grammar

Example: continued

// number
if (Character.isDigit(c)) {
StringBuilder sb = new StringBuilder ();
sb.append(c);
c = scanner.peek();
while (Character.isDigit(c)) {
sb.append(c);
scanner.next ();
¢ = scanner.peek();

return new Token(TokenClass .NUMBER, sb.toString ());

Christophe Dubach



Building a Lexer

Some grammars are ambiguous.

comment ::= "/«" .x "x/" | "//" .x NEWLINE
div SE N
Solution:

Longest matching rule

The lexer should produce the longest lexeme that corresponds to
the definition.
coursework hint: use peek ahead function from the Scanner

Christophe Dubach



Building a Lexer

Some grammars are ambiguous.

number ["="] digit+
digit 0" | ... | "9
plus o= "4

noon

minus 28 =B Y=

Solution:

Delay to parsing stage

Remove the ambiguity and deal with it during parsing

number = digit+

digit = "0" | ... | 79"
plus o= "4

minus 28 = ="

Christophe Dubach



Building a Lexer

Next lecture

@ Automatic Lexer Generation

Christophe Dubach



	Languages and Syntax
	Context-free Language
	Regular Expression
	Regular Languages

	Lexical Analysis
	Building a Lexer
	Ambiguous Grammar


