EPSRC Centre for Doctoral Training in Pervasive Parallelism

- 4-year programme: MSc by Research + PhD
- Research-focused: Work on your thesis topic from the start
- Collaboration between:
 - University of Edinburgh’s School of Informatics
 - Ranked top in the UK by 2014 REF
 - Edinburgh Parallel Computing Centre
 - UK’s largest supercomputing centre
- Research topics in software, hardware, theory and application of:
 - Parallelism
 - Concurrency
 - Distribution
- Full funding available
- Industrial engagement programme includes internships at leading companies

The biggest revolution in the technological landscape for fifty years

Now accepting applications! Find out more and apply at: pervasiveparallelism.inf.ed.ac.uk
Compiling Techniques
Lecture 15: Register Allocation
Christophe Dubach

EaC : Chapter 13
Overview

- Data Flow Analysis
- Local Register Allocation
- Global Register Allocation via Graph Colouring
Register Allocation

* Critical properties
 - Produce correct code that uses k (or fewer) registers
 - Minimise added loads and stores
 - Minimise space used to hold spilled values
 - Operate efficiently
 - $O(n)$, $O(n \log n)$, maybe $O(n^2)$, but not $O(\text{exp}(n))$
Register Allocation

The Task
- At each point in the code, pick the values to keep in registers
- Insert code to move values between registers & memory
- Minimise inserted code
- Make good use of any extra registers

Allocation versus assignment
- Allocation is deciding which values to keep in registers
- Assignment is choosing specific registers for values
- This distinction is often lost in the literature
- The compiler must perform both allocation & assignment
Basic Blocks

- **Definition**
 - A basic block is a maximal length segment of straight-line (i.e., branch free) code

- **Importance** (assuming normal execution)
 - Strongest facts are provable for branch-free code
 - If any statement executes, they all execute
 - Execution is totally ordered

- **Optimisation**
 - Many techniques for improving basic blocks
 - Simplest problems
 - Strongest methods
Data Flow Analysis

* Idea
 * Data-flow analysis derives information about the dynamic behaviour of a program by only examining the static code

* Example
 * How many registers do we need for the program below?
 * Easy bound: the number of variables used (3)
 * Better answer is found by considering the dynamic requirements of the program

```
a := 0
L1: b := a + 1
c := c + b
a := b *2
if a < 9 goto L1
return c
```
Liveness Analysis

Definition
- A variable is live at a particular point in the program if its value at that point will be used in the future (dead, otherwise).
- To compute liveness at a given point, we need to look into the future.

Motivation: Register Allocation
- A program contains an unbounded number of variables.
- Must execute on a machine with a bounded number of registers.
- Two variables can use the same register if they are never in use at the same time (i.e., never simultaneously live).
- Register allocation uses liveness information.
What is the live range of b?

- Variable b is read in statement 4, so b is live on the (3 → 4) edge.
- Since statement 3 does not assign into b, b is also live on the (2 → 3) edge.
- Statement 2 assigns b, so any value of b on the (1 → 2) and (5 → 2) edges are not needed, so b is dead along these edges.

b’s live range is (2 → 3 → 4)
Example Continued

Live range of a
- a is live from $(1 \rightarrow 2)$ and again from $(4 \rightarrow 5 \rightarrow 2)$
- a is dead from $(2 \rightarrow 3 \rightarrow 4)$

Live range of b
- b is live from $(2 \rightarrow 3 \rightarrow 4)$

Live range of c
- c is live from $(\text{entry} \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 2, 5 \rightarrow 6)$

Variables a and b are never simultaneously live, so they can share a register.
Terminology

Flow Graph Terms
- A CFG node has **out-edges** that lead to **successor** nodes and **in-edges** that come from **predecessor** nodes
- \(\text{pred}[n] \) is the set of all predecessors of node \(n \)
- \(\text{succ}[n] \) is the set of all successors of node \(n \)

Examples
- Out-edges of node 5: \((5 \rightarrow 6)\) and \((5 \rightarrow 2)\)
- \(\text{succ}[5] = \{2,6\} \)
- \(\text{pred}[5] = \{4\} \)
- \(\text{pred}[2] = \{1,5\} \)
Uses and Defs

Def (or definition)
- An **assignment** of a value to a variable
- \(\text{def}[v] \) = set of CFG nodes that define variable \(v \)
- \(\text{def}[n] \) = set of variables that are defined at node \(n \)

Use
- A **read** of a variable’s value
- \(\text{use}[v] \) = set of CFG nodes that use variable \(v \)
- \(\text{use}[n] \) = set of variables that are used at node \(n \)

More precise definition of liveness
- A variable \(v \) is live on a CFG edge if
 1. \(\exists \) a directed path from that edge to a use of \(v \) (node in \(\text{use}[v] \)), and
 2. that path does not go through any def of \(v \) (no nodes in \(\text{def}[v] \))
Computing Liveness

Rules for computing liveness

1. Generate liveness:
 If a variable is in use[n],
 it is live-in at node n

2. Push liveness across edges:
 If a variable is live-in at a node n
 then it is live-out at all nodes in pred[n]

3. Push liveness across nodes:
 If a variable is live-out at node n and not in def[n]
 then the variable is also live-in at n

Data-flow equations

1. \(\text{in}[n] = \text{use}[n] \cup (\text{out}[n] - \text{def}[n]) \)

2. \(\text{out}[n] = \bigcup_{s \in \text{succ}[n]} \text{in}[s] \)

3. FIX-POINT ALGORITHM
Local Register Allocation

What’s “local” ? (as opposed to “global”)
- A local transformation operates on basic blocks
- Many optimisations are done locally

Does local allocation solve the problem?
- It produces decent register use inside a block
- Inefficiencies can arise at boundaries between blocks

How many passes can the allocator make?
- This is an off-line problem
- As many passes as it takes
Observations

* Allocator may need to reserve registers to ensure feasibility
 * Must be able to compute addresses
 * Requires some minimal set of registers, F
 * F depends on target architecture
 * Use these registers only for spilling

* What if $k - F < |values| < k$?
 * Check for this situation
 * Adopt a more complex strategy (iterate?)
 * Accept the fact that the technique is an approximation

* $|values| > k$?
 * Some values must be spilled to memory
Top-down Versus Bottom-up Allocation

- **Top-down allocator**
 - Work from external notion of what is important
 - Assign registers in priority order
 - Save some registers for the values relegated to memory

- **Bottom-up allocator**
 - Work from detailed knowledge about problem instance
 - Incorporate knowledge of partial solution at each step
 - Handle all values uniformly
Top-down Allocator

- **The idea:**
 - Keep busiest values in a register
 - Use the reserved set, F, for the rest

- **Algorithm:**
 - Rank values by number of occurrences
 - Allocate first $k - F$ values to registers
 - Rewrite code to reflect these choices

- Common technique of 60’s and 70’s
Bottom-up Allocator

- **The idea:**
 - Focus on replacement rather than allocation
 - Keep values used “soon” in registers

- **Algorithm:**
 - Start with empty register set
 - Load on demand
 - When no register is available, free one

- **Replacement:**
 - Spill the value whose next use is farthest in the future
 - Prefer clean value to dirty value
 - Sound familiar? Think page replacement ...
Example

loadI 1028 => r1 // r1 ← 1028
load r1 => r2 // r2 ← MEM(r1) == y
mult r1, r2 => r3 // r3 ← 2 · y
loadI x => r4 // r4 ← x
sub r4, r2 => r5 // r5 ← x - y
loadI z => r6 // r6 ← z
mult r5, r6 => r7 // r7 ← z · (x - y)
sub r7, r3 => r8 // r5 ← z · (x - y) - (2 · y)
store r8 => r1 // MEM(r1) ← z · (x - y) - (2 · y)
Live Ranges

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Value</th>
<th>Register</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>loadI</code></td>
<td>1028</td>
<td>r1</td>
<td></td>
</tr>
<tr>
<td><code>load</code></td>
<td>r1</td>
<td>r2</td>
<td>r1 r2</td>
</tr>
<tr>
<td><code>mult</code></td>
<td>r1, r2</td>
<td>r3</td>
<td>r1 r2 r3</td>
</tr>
<tr>
<td><code>loadI</code></td>
<td>x</td>
<td>r4</td>
<td>r1 r2 r3r4</td>
</tr>
<tr>
<td><code>sub</code></td>
<td>r4, r2</td>
<td>r5</td>
<td>r1 r3 r5</td>
</tr>
<tr>
<td><code>loadI</code></td>
<td>z</td>
<td>r6</td>
<td>r1 r3 r5r6</td>
</tr>
<tr>
<td><code>mult</code></td>
<td>r5, r6</td>
<td>r7</td>
<td>r1 r3 r7</td>
</tr>
<tr>
<td><code>sub</code></td>
<td>r7, r3</td>
<td>r8</td>
<td>r1 r8</td>
</tr>
<tr>
<td><code>store</code></td>
<td>r8</td>
<td>r1</td>
<td></td>
</tr>
</tbody>
</table>
Top Down (3 Regs)

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Value</th>
<th>Register</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>loadI</td>
<td>1028</td>
<td>r1</td>
<td>// r1</td>
</tr>
<tr>
<td>load</td>
<td>r1</td>
<td>r2</td>
<td>// r1 r2</td>
</tr>
<tr>
<td>mult</td>
<td>r1, r2</td>
<td>r3</td>
<td>// r1 r2 r3</td>
</tr>
<tr>
<td>loadI</td>
<td>x</td>
<td>r4</td>
<td>// r1 r2 r3 r4</td>
</tr>
<tr>
<td>sub</td>
<td>r4, r2</td>
<td>r5</td>
<td>// r1 r3 r5</td>
</tr>
<tr>
<td>loadI</td>
<td>z</td>
<td>r6</td>
<td>// r1 r3 r5 r6</td>
</tr>
<tr>
<td>mult</td>
<td>r5, r6</td>
<td>r7</td>
<td>// r1 r3 r7</td>
</tr>
<tr>
<td>sub</td>
<td>r7, r3</td>
<td>r8</td>
<td>// r1 r8</td>
</tr>
<tr>
<td>store</td>
<td>r8</td>
<td>r1</td>
<td>//</td>
</tr>
</tbody>
</table>

R3 least frequently used.
Bottom Up (3 Regs)

loadI 1028 ⇒ r1 // r1
load r1 ⇒ r2 // r1 r2
mult r1, r2 ⇒ r3 // r1 r2 r3
loadI x ⇒ r4 // r1 r2 r3 r4 >3 REGISTERS
sub r4, r2 ⇒ r5 // r1 r3 r5
loadI z ⇒ r6 // r1 r3 r5 r6
mult r5, r6 ⇒ r7 // r1 r3 // r7
sub r7, r3 ⇒ r8 // r1 r8
store r8 ⇒ r1 //

R1 USE FARTHEST AWAY
Graph Colouring Register Allocation

- **Idea:**
 - Build a “conflict graph” or “interference graph”
 - Nodes - Virtual Registers
 - Edges - Overlapping Live Ranges
 - Find a k-colouring for the graph, or change the code to a nearby problem that it can k-colour
 - Colours - Physical Registers
Graph Colouring

- A graph G is said to be k-colourable iff the nodes can be labeled with integers 1... k so that no edge in G connects two nodes with the same label.

Each color can be mapped to a distinct physical register.
Interference Graph

- **What is an “interference”? (or conflict)**
 - Two values interfere if there exists an operation where both are simultaneously live
 - If x and y interfere, they cannot occupy the same register

- **To compute interferences, we must know where values are “live”**

- **Interference graph G_I**
 - Nodes in G_I represent values, or live ranges
 - Edges in G_I represent individual interferences
 - For $x, y \in G_I$, $(x, y) \in G_I$ iff x and y interfere
 - A k-colouring of G_I can be mapped into an allocation to k registers
Observations

- Suppose you have k registers
- Look for a k colouring
- Any vertex n that has fewer than k neighbours in the interference graph \(n^\circ < k \) can always be coloured!
- Pick any colour not used by its neighbours — there must be one
Ideas behind algorithm

* Pick any vertex \(n \) such that \(n^\circ < k \) and put it on the stack

* Remove that vertex and all edges incident from the interference graph
 * This may make some new nodes have fewer than \(k \) neighbours

* At the end, if some vertex \(n \) still has \(k \) or more neighbours, then spill the live range associated with \(n \)

* Otherwise successively pop vertices off the stack and colour them in the lowest colour not used by some neighbour
Chaitin’s Algorithm

- While ∃ vertices with <k neighbours in G₁
 - Pick any vertex n such that n°< k and put it on the stack
 - Remove that vertex and all edges incident to it from G₁
 - This will lower the degree of n’s neighbours

- If G₁ is non-empty (all vertices have k or more neighbours) then:
 - Pick a vertex n (using some heuristic) and spill the live range associated with n
 - Remove vertex n from G₁, along with all edges incident to it and put it on the stack
 - If this causes some vertex in G₁ to have fewer than k neighbours, then go to step 1; otherwise, repeat step 2

- Successively pop vertices off the stack and colour them in the lowest colour not used by some neighbour
Example (3 Registers)
Chaitin Algorithm

- renumber
- build
- coalesce
- spill costs
- simplify
- select
- spill

Build SSA, build live ranges, rename

Build the interference graph

Fold unneeded copies
\(LR_x \rightarrow LR_y, \text{ and } <LR_x, LR_y> \notin G_i \Rightarrow \text{combine } LR_x \& LR_y \)

Estimate cost for spilling each live range

Remove nodes from the graph

While stack is non-empty
 pop \(n \), insert \(n \) into \(G_i \), & try to color it

Spill uncolored definitions & uses

while \(N \) is non-empty
 if \(\exists n \text{ with } n^k < k \) then
 push \(n \) onto stack
 else pick \(n \) to spill
 push \(n \) onto stack
 remove \(n \) from \(G_i \)
Exercise

- Build the interference graph for this code

```
loadI  1028  ⇒ r1  // r1
load   r1  ⇒ r2  // r1 r2
mult   r1, r2 ⇒ r3  // r1 r2 r3
loadI  x    ⇒ r4  // r1 r2 r3 r4
sub    r4, r2 ⇒ r5  // r1 r3 r5
loadI  z    ⇒ r6  // r1 r3 r5 r6
mult   r5, r6 ⇒ r7  // r1 r3 r7
sub    r7, r3 ⇒ r8  // r1 r8
store  r8    ⇒ r1  //
```