Lecture 14

Instruction Selection: Tree-pattern matching

(EaC-11.3)
The Concept

Many compilers use tree-structured IRs
• Abstract syntax trees generated in the parser
• Trees or DAGs for expressions

These systems might well use trees to represent target ISA

Consider the ILOC add operators

\[
\begin{align*}
\text{add } r_i, r_j &\Rightarrow r_k \\
\text{addI } r_i, c_j &\Rightarrow r_k
\end{align*}
\]

If we can match these “pattern trees” against IR trees, ...
The Concept

Low-level AST for $w \leftarrow x - 2 \times y$

ARP: r_{arp}
NUM: constant
LAB: ASM label

- w: at ARP+4
- x: at ARP-26
- Y: at @G+12

Activation Record Pointer (a Frame)
The Concept

Low-level AST for $w \leftarrow x - 2 \times y$

- **ARP:** r_{arp}
- **NUM:** constant
- **LAB:** ASM label

- w: at ARP+4
- x: at ARP-26
- y: at @G+12
Goal is to “tile” AST with operation trees

- A tiling is collection of \(<ast, op>\) pairs
 - \(ast\) is a node in the AST
 - \(op\) is an operation tree
 - \(<ast, op>\) means that \(op\) could implement the subtree at \(ast\)

- A tiling ‘implements” an AST if it covers every node in the AST and the overlap between any two trees is limited to a single node
 - \(<ast, op>\in\) tiling means \(ast\) is also covered by a leaf in another operation tree in the tiling, unless it is the root
 - Where two operation trees meet, they must be compatible (expect the value in the same location)
Tiling the Tree

Each tile corresponds to a sequence of operations. Emitting those operations in an appropriate order implements the tree.
Generating Code

Given a tiled tree

- Postorder treewalk, with node-dependent order for children
 - Right child of ← before its left child
 - Might impose “most demanding first” rule ...

- Emit code sequence for tiles, in order

- Tie boundaries together with register names
 - Tile 6 uses registers produced by tiles 1 & 5
 - Tile 6 emits “\texttt{store r_{tile\ 5} \rightarrow r_{tile\ 1}}”
 - Can incorporate a “real” allocator or can use “\texttt{NextRegister++}”
So, What’s Hard About This?

Finding the matches to tile the tree

• Compiler writer connects operation trees to AST subtrees
 → Encode tree syntax, in linear form
 → Provides a set of rewrite rules
 → Associated with each is a code template
To describe these trees, we need a concise notation

\[r_i + (r_i, c_j) + (r_i, r_j) \]

Linear prefix form
To describe these trees, we need a concise notation.
Notation

To describe these trees, we need a concise notation

\[
\text{ST}(+(\text{VAL}_1,\text{NUM}_1), -(\text{REF}(\text{REF}(+(\text{VAL}_2,\text{NUM}_2))), *(\text{NUM}_3,(\text{REF}(+(\text{LAB}_1,\text{NUM}_3))))))
\]
Rewrite rules: LL Integer AST into ILOC

<table>
<thead>
<tr>
<th>Rule</th>
<th>Cost</th>
<th>Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Goal → Assign</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2. Assign → ST(Reg₁,Reg₂)</td>
<td>1</td>
<td>store (r₂ \Rightarrow r₁)</td>
</tr>
<tr>
<td>3. Assign → ST(+ (Reg₁,Reg₂),Reg₃)</td>
<td>1</td>
<td>storeAO (r₃ \Rightarrow r₁,r₂)</td>
</tr>
<tr>
<td>4. Assign → ST(+ (Reg₁,NUM₂),Reg₃)</td>
<td>1</td>
<td>storeAI (r₃ \Rightarrow r₁,n₂)</td>
</tr>
<tr>
<td>5. Assign → ST(+ (NUM₁,Reg₂),Reg₃)</td>
<td>1</td>
<td>storeAI (r₃ \Rightarrow r₂,n₁)</td>
</tr>
<tr>
<td>6. Reg → LAB₁</td>
<td>1</td>
<td>loadI (l₁ \Rightarrow r_{new})</td>
</tr>
<tr>
<td>7. Reg → VAL₁</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8. Reg → NUM₁</td>
<td>1</td>
<td>loadI (n₁ \Rightarrow r_{new})</td>
</tr>
<tr>
<td>9. Reg → REF(Reg₁)</td>
<td>1</td>
<td>load (r₁ \Rightarrow r_{new})</td>
</tr>
<tr>
<td>10. Reg → REF(+ (Reg₁,Reg₂))</td>
<td>1</td>
<td>loadAO (r₁,r₂ \Rightarrow r_{new})</td>
</tr>
<tr>
<td>11. Reg → REF(+ (Reg₁,NUM₂))</td>
<td>1</td>
<td>loadAI (r₁,n₂ \Rightarrow r_{new})</td>
</tr>
<tr>
<td>12. Reg → REF(+ (NUM₁,Reg₂))</td>
<td>1</td>
<td>loadAI (r₂,n₁ \Rightarrow r_{new})</td>
</tr>
</tbody>
</table>
Rewrite rules: LL Integer AST into ILOC (part II)

<table>
<thead>
<tr>
<th>Rule</th>
<th>Cost</th>
<th>Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reg → REF(+ (Reg₁,Lab₂))</td>
<td>1</td>
<td>loadAI (r₁,l₂ \Rightarrow r_{new})</td>
</tr>
<tr>
<td>Reg → REF(+ (Lab₁,Reg₂))</td>
<td>1</td>
<td>loadAI (r₂,l₁ \Rightarrow r_{new})</td>
</tr>
<tr>
<td>Reg → + (Reg₁,Reg₂)</td>
<td>1</td>
<td>addI (r₁,r₂ \Rightarrow r_{new})</td>
</tr>
<tr>
<td>Reg → + (Reg₁,NUM₂)</td>
<td>1</td>
<td>addI (r₁,n₂ \Rightarrow r_{new})</td>
</tr>
<tr>
<td>Reg → + (NUM₁,Reg₂)</td>
<td>1</td>
<td>addI (r₂,n₁ \Rightarrow r_{new})</td>
</tr>
<tr>
<td>Reg → + (Reg₁,Lab₂)</td>
<td>1</td>
<td>addI (r₁,l₂ \Rightarrow r_{new})</td>
</tr>
<tr>
<td>Reg → + (Lab₁,Reg₂)</td>
<td>1</td>
<td>addI (r₂,l₁ \Rightarrow r_{new})</td>
</tr>
<tr>
<td>Reg → - (NUM₁,Reg₂)</td>
<td>1</td>
<td>rsupI (r₂,n₁ \Rightarrow r_{new})</td>
</tr>
</tbody>
</table>

A real set of rules would cover more than signed integers ...
So, What’s Hard About This?

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example
So, What’s Hard About This?

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example

What rules match tile 3?

```
REF
   +
  / \
LAB @G NUM 12
```
So, What’s Hard About This?

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example

What rules match tile 3?

6: $\text{Reg} \rightarrow \text{LAB}_1$ tiles the lower left node
So, What’s Hard About This?

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example

What rules match tile 3?

6: Reg \rightarrow LAB$_1$ tiles the lower left node

8: Reg \rightarrow NUM$_1$ tiles the bottom right node
So, What’s Hard About This?

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example

What rules match tile 3?

6: Reg → LAB₁ tiles the lower left node
8: Reg → NUM₁ tiles the bottom right node
15: Reg → + (Reg₁,Reg₂) tiles the + node
Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example

What rules match tile 3?

6: Reg → LAB₁ tiles the lower left node
8: Reg → NUM₁ tiles the bottom right node
15: Reg → + (Reg₁,Reg₂) tiles the + node
9: Reg → REF(Reg₁) tiles the REF
So, What’s Hard About This?

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example

What rules match tile 3?

6: Reg → LAB$_1$ tiles the lower left node
8: Reg → NUM$_1$ tiles the bottom right node
15: Reg → + (Reg$_1$,Reg$_2$) tiles the + node
9: Reg → REF(Reg$_1$) tiles the REF

We denote this match as $<6,8,15,9>$
Of course, it implies $<8,6,15,9>$
Both have a cost of 4
Finding matches

Many Sequences Match Our Subtree

<table>
<thead>
<tr>
<th>Cost</th>
<th>Sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6,11</td>
</tr>
<tr>
<td>3</td>
<td>6,8,10</td>
</tr>
<tr>
<td>4</td>
<td>6,8,15,9</td>
</tr>
</tbody>
</table>

In general, we want the low cost sequence
• Each unit of cost is an operation (1 cycle)
• We should favour short sequences
Finding matches

Low Cost Matches

These two are equivalent in cost
6,13 might be better, because @G may be longer than the immediate field
Tiling the Tree

Still need an algorithm
• Assume each rule implements one operator
• Assume operator takes 0, 1, or 2 operands
Now, ...
Tiling the Tree

\(\text{Tile}(n)\)
\(\text{Label}(n) \leftarrow \emptyset\)

if \(n\) has two children then
 \(\text{Tile (left child of } n)\)
 \(\text{Tile (right child of } n)\)
 for each rule \(r\) that implements \(n\)
 if \((\text{left}(r) \in \text{Label(left}(n))\) and
 \((\text{right}(r) \in \text{Label(right}(n))\)
 then \(\text{Label}(n) \leftarrow \text{Label}(n) \cup \{r\}\)

else if \(n\) has one child
 \(\text{Tile(child of } n)\)
 for each rule \(r\) that implements \(n\)
 if \((\text{left}(r) \in \text{Label(child}(n))\)
 then \(\text{Label}(n) \leftarrow \text{Label}(n) \cup \{r\}\)

else /* \(n\) is a leaf */
 \(\text{Label}(n) \leftarrow \{\text{all rules that implement } n\}\)

Match binary nodes against binary rules
Match unary nodes against unary rules
Handle leaves with lookup in rule table
Tiling the Tree

This algorithm
- Finds all matches in rule set
- Labels node n with that set
- Can keep lowest cost match at each point
- Leads to a notion of local optimality — lowest cost at each point
- Spends its time in the two matching loops

\[
\begin{align*}
\text{Tile}(n) & \\
\text{Label}(n) & \leftarrow \emptyset \\
\text{if } n \text{ has two children then} & \\
\text{Tile (left child of } n) & \\
\text{Tile (right child of } n) & \\
\text{for each rule } r \text{ that implements } n & \\
& \text{if } (\text{left}(r) \in \text{Label(left}(n))) \text{ and} \\
& \quad (\text{right}(r) \in \text{Label(right}(n))) \\
& \quad \text{then } \text{Label}(n) \leftarrow \text{Label}(n) \cup \{ r \} \\
\text{else if } n \text{ has one child} & \\
\text{Tile(child of } n) & \\
\text{for each rule } r \text{ that implements } n & \\
& \text{if } (\text{left}(r) \in \text{Label(child}(n))) \\
& \quad \text{then } \text{Label}(n) \leftarrow \text{Label}(n) \cup \{ r \} \\
\text{else /* } n \text{ is a leaf */} & \\
\text{Label}(n) & \leftarrow \{ \text{all rules that implement } n \}
\end{align*}
\]
The Big Picture

- Tree patterns represent AST and ASM
- Can use matching algorithms to find low-cost tiling of AST
- Can turn a tiling into code using templates for matched rules
- Techniques (& tools) exist to do this efficiently

Hand-coded matcher like *Tile*	Avoids large sparse table
Encode matching as an automaton	O(1) cost per node
Use parsing techniques	Uses known technology
Linearize tree into string and use string searching algorithm (Aho-Corasick)	Finds all matches
Tools like BURS (bottom-up rewriting system), BURG	

Very ambiguous grammars
Next Lecture

- Register Allocation