Compiling Techniques

Lecture 4: Automatic Lexer Generation (EaC§2.4)

Christophe Dubach

2 October 2015

Table of contents

- 1 Finite State Automata for Regular Expression
 - Finite State Automata
 - Non-determinism
- 2 From Regular Expression to Generated Lexer
 - Regular Expression to NFA
 - From NFA to DFA
- Final Remarks

Definition: finite state automata

A finite state automata is defined by:

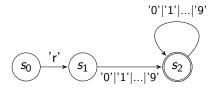
- S, a finite set of states
- \bullet Σ , an alphabet, or character set used by the recogniser
- $\delta(s,c)$, a transition function (takes a state and a character and returns new state)
- s₀, the initial or start state
- S_F , a set of final states (a stream of characters is accepted iif the automata ends up in a final state)

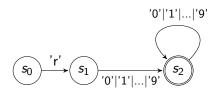
Finite State Automata for Regular Expression

Example: register names

```
\mbox{register} \; ::= \; \mbox{'r'} \; \left( \; \mbox{'0'} \; | \; \mbox{'1'} \; | \; \ldots \; | \; \mbox{'9'} \; \right) \; \; \left( \; \mbox{'0'} \; | \; \mbox{'1'} \; | \; \ldots \; | \; \mbox{'9'} \; \right)^*
```

The RE (Regular Expression) corresponds to a recogniser (or finite state automata):





Finite State Automata (FSA) operation:

- Start in state s_0 and take transitions on each input character
- The FSA accepts a word x iff x leaves it in a final state (s_2)

Examples:

- **r17** takes it through s_0, s_1, s_2 and accepts
- **r** takes it through s_0 , s_1 and fails
- a starts in s₀ and leads straight to failure

Table encoding and skeleton code

To be useful a recogniser must be turned into code

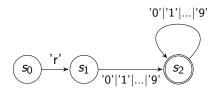


Table encoding RE

δ	'r'	'0' '1' '9'	others
<i>s</i> ₀	<i>s</i> ₁	error	error
<i>s</i> ₁	error	<i>s</i> ₂	error
<i>s</i> ₂	error	<i>s</i> ₂	error

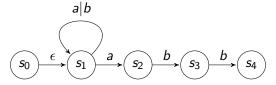
Skeleton recogniser

```
c = next character state = s_0 while (c \neq EOF) state = \delta(state, c) c = next character if (state final) return success else return error
```

DFA

Each RE corresponds to a Deterministic Finite Automaton (DFA). However, it might be hard to construct directly.

What about an RE such as (a|b)*abb?



This is a little different:

- s_0 has a transition on ϵ , which can be followed without consuming an input character
- s₁ has two transitions on a
- This is a Non-determinisitic Finite Automaton (NFA)

Non-deterministic vs deterministic finite automata

Deterministic finite state automata (DFA) :

- All edges leaving the same node have distinct labels
- There is no ϵ transition

Non-deterministic finite state automata (NFA) :

- Can have multiple edges leaving from the same node and label with the same character
- ullet Can have a special transition, ϵ
- This means we might have to backtrack

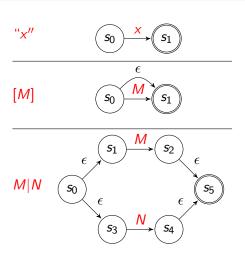
Automatic Lexer Generation

It is possible to systematically generate a lexer for any regular expression.

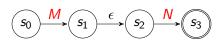
This can be done in three steps:

- lacktriangledown regular expression (RE) ightarrow non-deterministic finite automata (NFA)
- NFA → deterministic finite automata (DFA)
- **3** DFA \rightarrow generated lexer

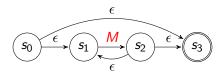
1st step: RE → NFA (Ken Thompson, CACM, 1968)



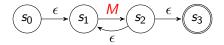
M N



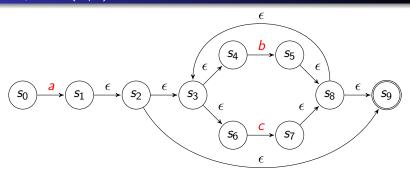
M*



 M^+



Example: $a(b|c)^*$



A human would do: s_0 \xrightarrow{a} s_1

Step 2: NFA \rightarrow DFA

Executing a non-deterministic finite automata requires backtracking, which is inefficient. To overcome this, we need to construct a DFA using the NFA.

The main idea:

- We build a DFA which has one state for each set of states the NFA could end up in.
- A set of state is final in the DFA if it contains the final state from the NFA.
- Since the number of states in the NFA is finite (n), the number of possible sets is also finite (maximum 2^n).

Assuming the state of the NFA are labelled s_i and the states of the DFA we are building are labelled q_i . We have two key functions:

- reachable(s_i , α) returns the set of states reachable from s_i by consuming α from the input
- ϵ -closure(s_i) returns the set of states reachable from s_i by ϵ (e.g., without consuming any input)

The Subset Construction algorithm (Fixed point iteration)

```
q_0 = \epsilon\text{-}closure(s_0) ; Q = q_0 ; WorkList = q_0 while (WorkList not empty) remove a q from WorkList for each \alpha \in \Sigma subset = \epsilon\text{-}closure(reachable(q,\alpha)) \delta[q,\alpha] = subset if (subset \notin Q) then add subset to Q and to WorkList
```

The algorithm (in English)

- Start from start state s_0 of the NFA, compute its ϵ -closure
- ullet Build subset from all states reachable from q_0 for an input lpha
- ullet Add this subset to the transition table/function δ
- If the subset has not been seen before, add it to the worklist
- Iterate until no new subset are created

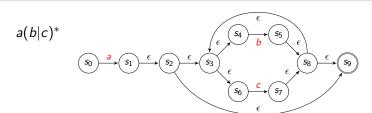
Informal proof of termination

- Q contains no duplicates (test before adding)
- similarly we will never add twice the same subset to the worklist
- bounded number of states; maximum 2^n subsets, where n is number of state in NFA
- \Rightarrow the loop halts

End result

- S contains all the reachable NFA states
- It tries each symbol in each s_i
- It builds every possible NFA configuration
- \Rightarrow Q and δ form the DFA

$NFA \rightarrow DFA$



		ϵ -closure(reachable(q, α))		
	NFA states	a	b	С
q_0	<i>s</i> ₀	q_1	none	none
q_1	$s_1, s_2, s_3, s_4, s_6, s_9$	none	q ₂	9 3
	s_4, s_6, s_9			
q_2	<i>S</i> ₅ , <i>S</i> ₈ , <i>S</i> ₉ , <i>S</i> ₃ , <i>S</i> ₄ , <i>S</i> ₆	none	<i>q</i> ₂	<i>q</i> ₃
	s ₃ , s ₄ , s ₆			
q_3	<i>S</i> ₇ , <i>S</i> ₈ , <i>S</i> ₉ , <i>S</i> ₃ , <i>S</i> ₄ , <i>S</i> ₆	none	<i>q</i> ₂	<i>q</i> ₃
	<i>s</i> ₃ , <i>s</i> ₄ , <i>s</i> ₆			

Resulting DFA for $a(b|c)^*$

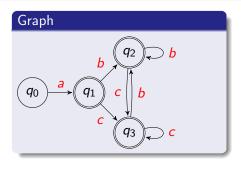


Table encoding							
	а	b	С				
q_0	q_1	error	error				
q_1	error	q_2	q ₃				
q 2	error	q ₂	q 3				
q 3	error	q ₂	q 3				

- Smaller than the NFA
- All transitions are deterministic (no need to backtrack!)
- Could be even smaller (see EaC§2.4.4 Hopcroft's Algorithm for minimal DFA)
- Can generate the lexer using skeleton recogniser seen earlier

What can be so hard?

Poor language design can complicate lexing

- Reserved words (keywords) are important: PL/I
 if then then then = else; else else = then
- Insignificant blanks (whitespaces): Fortran & Algol68 do $10 i = 1.25 \cong do 10 i = 1.25 (loop)$ do $10 i = 1.25 \cong do 10 i = 1.25 (assignment)$
- String constants with special characters: C,C++,Java newline, tab, quote, comment delimiters, . . .

Building Scanners

The important point:

- All this technology lets us automate scanner construction
- Implementer writes down regular expressions
- Scanner generator builds NFA, DFA and then writes out code
- This reliable process produces fast and robust scanners

For most modern language features, this works:

- As a language designer you should think twice before introducing a feature that defeats a DFA-based scanner
- The ones we have seen (e.g., insignificant blanks, non-reserved keywords) have not proven particularly useful or long lasting

Next lecture

Parsing:

- Context-Free Grammars
- Dealing with ambiguity
- Recursive descent parser