Compiling Techniques
Lecture 4: Automatic Lexer Generation
(EaC§2.4)

Christophe Dubach

26 September 2017
Reminder

Action

Give us permission to access your bitbucket repository.
Starting from a collection of regular expressions (RE) we automatically generate a Lexer.

We use finite state automata (FSA) for the construction.
Definition: finite state automata

A finite state automata is defined by:

- S, a finite set of states
- Σ, an alphabet, or character set used by the recogniser
- $\delta(s, c)$, a transition function (takes a state and a character and returns new state)
- s_0, the initial or start state
- S_F, a set of final states (a stream of characters is accepted if the automata ends up in a final state)
Example: register names

\[\text{register} ::= \ 'r' \ (\ '0' | '1' | \ldots | '9' \) \ (\ '0' | '1' | \ldots | '9' \)^* \]

The RE (Regular Expression) corresponds to a recogniser (or finite state automata):

\['0'|'1'|\ldots'|9' \]

\[s_0 \xrightarrow{'r'} s_1 \xrightarrow{'0'|'1'|\ldots'|9'} s_2 \]
Finite State Automata (FSA) operation:

- Start in state s_0 and take transitions on each input character.
- The FSA accepts a word x iff x leaves it in a final state (s_2).

Examples:

- $r17$ takes it through s_0, s_1, s_2 and accepts.
- r takes it through s_0, s_1 and fails.
- a starts in s_0 and leads straight to failure.
To be useful a recogniser must be turned into code.

Skeleton recogniser

```plaintext
c = next character
state = s0
while (c ≠ EOF)
  state = δ(state, c)
c = next character
if (state final)
  return success
else
  return error
```

Table encoding RE

| δ | 'r' | '0'|'1'|...|'9' | others |
|-----|-----|----|----|----|-------|
| s0 | s1 | error | error |
| s1 | error | s2 | error |
| s2 | error | s2 | error |

Diagram:

- **States:** s0, s1, s2
- **Transitions:**
 - s0 -> s1 on '0'|'1'|...|'9'
 - s1 -> s2 on '0'|'1'|...|'9'
 - s2 on any input results in error state

Notes:

- Table encoding RE
- Skeleton recogniser
- Finite State Automata for Regular Expression
- From Regular Expression to Generated Lexer
- Final Remarks
- Non-determinism
Deterministic Finite Automaton

Each RE corresponds to a Deterministic Finite Automaton (DFA). However, it might be hard to construct directly.

What about an RE such as \((a|b)^*abb\)?

\[
\begin{array}{c}
\text{a|b} \\
\downarrow \\
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{b}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
s_0 \\
\epsilon
\end{array}
\begin{array}{c}
\xrightarrow{\epsilon} \\
\xrightarrow{a} \\
\xrightarrow{b} \\
\xrightarrow{b}
\end{array}
\begin{array}{c}
s_1 \\
s_2 \\
s_3 \\
s_4
\end{array}
\]

This is a little different:

- \(s_0\) has a transition on \(\epsilon\), which can be followed without consuming an input character
- \(s_1\) has two transitions on \(a\)
- This is a **Non-determinisitic Finite Automaton (NFA)**
Non-deterministic vs deterministic finite automata

Deterministic finite state automata (DFA):
- All edges leaving the same node have distinct labels
- There is no ϵ transition

Non-deterministic finite state automata (NFA):
- Can have multiple edges with the same label leaving from the same node
- Can have ϵ transition
- This means we might have to backtrack
It is possible to systematically generate a lexer for any regular expression. This can be done in three steps:

1. regular expression (RE) \rightarrow non-deterministic finite automata (NFA)
2. NFA \rightarrow deterministic finite automata (DFA)
3. DFA \rightarrow generated lexer
1st step: RE → NFA (Ken Thompson, CACM, 1968)

```
M \cdot N
```

```
M^+
```
Example: $a(b|c)^*$

A human would do:

```
          b|c
       /  \
      /    \
 a    /     \
      /       \
     /         \
    /           \
   /             \
  /               \
 s0 --a-- s1
```
Step 2: NFA → DFA

Executing a non-deterministic finite automata requires backtracking, which is inefficient. To overcome this, we need to construct a DFA from the NFA.

The main idea:

- We build a DFA which has one state for each set of states the NFA could end up in.
- A set of state is final in the DFA if it contains the final state from the NFA.
- Since the number of states in the NFA is finite (n), the number of possible sets of states is also finite (maximum 2^n).
Assuming the state of the NFA are labelled s_i and the states of the DFA we are building are labelled q_i. We have two key functions:

- $\text{reachable}(s_i, \alpha)$ returns the set of states reachable from s_i by consuming character α
- ϵ-$\text{closure}(s_i)$ returns the set of states reachable from s_i by ϵ (e.g. without consuming a character)
The Subset Construction algorithm (Fixed point iteration)

\[q_0 = \epsilon\text{-}closure(s_0); \quad Q = \{q_0\}; \quad \text{add } q_0 \text{ to WorkList} \]
while (WorkList not empty)
 remove \(q \) from WorkList
 for each \(\alpha \in \Sigma \)
 \(\text{subset} = \epsilon\text{-}closure(\text{reachable}(q, \alpha)) \)
 \(\delta(q, \alpha) = \text{subset} \)
 if (subset \(\notin Q \)) then
 add subset to \(Q \) and to WorkList

The algorithm (in English)

- Start from start state \(s_0 \) of the NFA, compute its \(\epsilon \)-closure
- Build subset from all states reachable from \(q_0 \) for character \(\alpha \)
- Add this subset to the transition table/function \(\delta \)
- If the subset has not been seen before, add it to the worklist
- Iterate until no new subset are created
Informal proof of termination

- Q contains no duplicates (test before adding)
- similarly we will never add twice the same subset to the worklist
- bounded number of states; maximum 2^n subsets, where n is number of state in NFA

⇒ the loop halts

End result

- S contains all the reachable NFA states
- It tries each symbol in each s_i
- It builds every possible NFA configuration

⇒ Q and δ form the DFA
Regular Expression to NFA

\[
a(b|c)^* \]

\[
\begin{array}{c|cccc}
\text{NFA states} & a & b & c \\
\hline
q_0 & s_0 & q_1 & \text{none} & \text{none} \\
q_1 & s_1, s_2, s_3, s_4, s_6, s_9 & \text{none} & q_2 & q_3 \\
q_2 & s_5, s_8, s_9, s_3, s_4, s_6 & \text{none} & q_2 & q_3 \\
q_3 & s_7, s_8, s_9, s_3, s_4, s_6 & \text{none} & q_2 & q_3 \\
\end{array}
\]
Resulting DFA for $a(b|c)^*$

- Smaller than the NFA
- All transitions are deterministic (no need to backtrack!)
- Could be even smaller
 (see EaC§2.4.4 Hopcroft’s Algorithm for minimal DFA)
- Can generate the lexer using skeleton recogniser seen earlier
What can be so hard?

Poor language design can complicate lexing

- **PL/I** does not have reserved words (keywords):

  ```plaintext
  if then then then = else; else else = then
  ```

- In **Fortran & Algol68** blanks (whitespaces) are insignificant:

  ```plaintext
  do 10 i = 1,25 ≅ do 10 i = 1,25 (loop)
  do 10 i = 1.25 ≅ do10i = 1.25 (assignment)
  ```

- In **C, C++, Java** string constants can have special characters:
 newline, tab, quote, comment delimiters, ...
Building Lexer

The important point:

- All this technology lets us automate lexer construction
- Implementer writes down regular expressions
- Lexer generator builds NFA, DFA and then writes out code
- This reliable process produces fast and robust lexers

For most modern language features, this works:

- As a language designer you should think twice before introducing a feature that defeats a DFA-based lexer
- The ones we have seen (e.g. insignificant blanks, non-reserved keywords) have not proven particularly useful or long lasting
Next lecture

Parsing:
- Context-Free Grammars
- Dealing with ambiguity
- Recursive descent parser