
Compiling Techniques
Lecture 15: Register Allocation

Christophe Dubach
EaC : Chapter 13

Overview

Data Flow Analysis

Local Register Allocation

Global Register Allocation via Graph Colouring

Register Allocation

Critical properties
Produce correct code that uses k (or fewer) registers

Minimise added loads and stores

Minimise space used to hold spilled values

Operate efficiently

O(n), O(n log n), maybe O(n*n), but not O(exp(n))

Register Allocation

The Task
At each point in the code, pick the values to keep in registers

Insert code to move values between registers & memory

Minimise inserted code

Make good use of any extra registers

Allocation versus assignment
Allocation is deciding which values to keep in registers

Assignment is choosing specific registers for values

This distinction is often lost in the literature

The compiler must perform both allocation & assignment

Basic Blocks
Definition

A basic block is a maximal length segment of straight-line
(i.e., branch free) code

Importance (assuming normal execution)
Strongest facts are provable for branch-free code

If any statement executes, they all execute

Execution is totally ordered

Optimisation
Many techniques for improving basic blocks

Simplest problems

Strongest methods

Data Flow Analysis
Idea

Data-flow analysis derives information about the dynamic behaviour
of a program by only examining the static code

Example
How many registers do we need for the program below?

Easy bound: the number of variables used (3)

Better answer is found by considering the dynamic requirements of
the program

a := 0
b := a + 1
c := c + b
a := b *2
if a < 9 goto L1
return c

L1:

Liveness Analysis

Definition
A variable is live at a particular point in the program if its value
at that point will be used in the future (dead, otherwise).

To compute liveness at a given point, we need to look into the
future

Motivation: Register Allocation
A program contains an unbounded number of variables

Must execute on a machine with a bounded number of registers

Two variables can use the same register if they are never in use
at the same time (i.e, never simultaneously live).

Register allocation uses liveness information

Example

Example Continued

Terminology

Uses and Defs

Computing Liveness

Local Register Allocation

What’s “local” ? (as opposed to “global”)
A local transformation operates on basic blocks

Many optimisations are done locally

Does local allocation solve the problem?
It produces decent register use inside a block

Inefficiencies can arise at boundaries between blocks

How many passes can the allocator make?
This is an off-line problem

As many passes as it takes

Observations
Allocator may need to reserve registers to
ensure feasibility

Must be able to compute addresses

Requires some minimal set of registers, F

F depends on target architecture

Use these registers only for spilling

What if k–F < |values| < k?
Check for this situation

Adopt a more complex strategy (iterate?)

Accept the fact that the technique is an approximation

|values| > k?
Some values must be spilled to memory

Top-down Versus
Bottom-up Allocation

Top-down allocator
Work from external notion of what is important

Assign registers in priority order

Save some registers for the values relegated to memory

Bottom-up allocator
Work from detailed knowledge about problem instance

Incorporate knowledge of partial solution at each step

Handle all values uniformly

Top-down Allocator

The idea:
Keep busiest values in a register

Use the reserved set, F, for the rest

Algorithm:
Rank values by number of occurrences

Allocate first k – F values to registers

Rewrite code to reflect these choices

Common technique of 60’s and 70’s

Bottom-up Allocator
The idea:

Focus on replacement rather than allocation

Keep values used “soon” in registers

Algorithm:
Start with empty register set

Load on demand

When no register is available, free one

Replacement:
Spill the value whose next use is farthest in the future

Prefer clean value to dirty value

Sound familiar? Think page replacement ...

Example

Live Ranges

Top Down (3 Regs)

R3 LEAST FREQUENTLY USED

Bottom Up (3 Regs)

R1 USE FARTHEST AWAY

Graph Colouring
Register Allocation

Idea:

Build a “conflict graph” or “interference graph”
Nodes - Virtual Registers

Edges - Overlapping Live Ranges

Find a k-colouring for the graph, or change the
code to a nearby problem that it can k-colour

Colours - Physical Registers

Graph Colouring

A graph G is said to be k-colourable iff the nodes
can be labeled with integers 1... k so that no edge
in G connects two nodes with the same label

Interference Graph
What is an “interference” ? (or conflict)

Two values interfere if there exists an operation where both are
simultaneously live

If x and y interfere, they cannot occupy the same register

To compute interferences, we must know where
values are “live”

Interference graph GI

Nodes in GI represent values, or live ranges

Edges in GI represent individual interferences

For x,y∈GI, (x,y)∈GI iff x and y interfere

A k-colouring of GI can be mapped into an allocation to k registers

Observations

Suppose you have k registers

Look for a k colouring

Any vertex n that has fewer than k neighbours
in the interference graph(n° < k) can always be
coloured !

Pick any colour not used by its neighbours —
there must be one

Ideas behind algorithm

Pick any vertex n such that n°< k and put it on the stack

Remove that vertex and all edges incident from the
interference graph

This may make some new nodes have fewer than k neighbours

At the end, if some vertex n still has k or more
neighbours, then spill the live range associated with n

Otherwise successively pop vertices off the stack and
colour them in the lowest colour not used by some
neighbour

Chaitin’s Algorithm
While ∃ vertices with <k neighbours in GI

Pick any vertex n such that n°< k and put it on the stack

Remove that vertex and all edges incident to it from GI

This will lower the degree of n’s neighbours

If GI is non-empty (all vertices have k or more
neighbours) then:

Pick a vertex n (using some heuristic) and spill the live range associated
with n

Remove vertex n from GI, along with all edges incident to it and put it on the
stack

If this causes some vertex in GI to have fewer than k neighbours, then go to
step 1; otherwise, repeat step 2

Successively pop vertices off the stack and colour
them in the lowest colour not used by some
neighbour

Example (3 Registers)

Example (3 Registers)

Example (3 Registers)

Example (3 Registers)

Example (3 Registers)

Example (3 Registers)

Example (3 Registers)

Example (3 Registers)

Example (3 Registers)

Example (3 Registers)

Chaitin Algorithm

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 40

