
Code Shapes (EaC Ch. 7))
Memory management

Function calls

Compiling Techniques
Lecture 12: Code generation

(EaC Chapter 7)

Christophe Dubach

31 October 2017

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Table of contents

1 Code Shapes (EaC Ch. 7))
Boolean and Relational Values
Control-Flow

2 Memory management
Static vs Dynamic
Data structures

3 Function calls

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Boolean and Relational Values
Control-Flow

Boolean and Relational Values

How to represent (x<10 && y>3)?

It depends on the target machine

Several approaches:

Numerical representation

Positional Encoding (e.g. MIPS assembly)

Conditional Move and Predication

Correct choice depends on both context and ISA (Instruction Set
Architecture)

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Boolean and Relational Values
Control-Flow

Numerical Representation

Assign values to true and false , usually 1 and 0

Use comparison operator from the ISA to get a value from a
relational expression

Example

x < y cmp LT rx , r y → r1

i f (x < y)
stmt1

e l s e
stmt2

cmp LT rx , r y→ r1
cb r r1 →L1
stmt2
br → Le

L1 : stmt1
Le :

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Boolean and Relational Values
Control-Flow

Positional Encoding

What if the ISA does not provide comparison operators that
returns a value?

Must use conditional branch to interpret the result of a
comparison

Necessitates branches in the evaluation

This is the case for MIPS assembly (and Java ByteCode for
instance)

Example: x<y

br LT rx , r y → LT

l o a d I 0 → r1
br → LE

LT : l o a d I 1 → r1
LE : . . .

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Boolean and Relational Values
Control-Flow

If the result is used to control an operation, then positional
encoding is not that bad.

Example

i f (x < y)
a = c + d ;

e l s e
a = e + f ;

Corresponding assembly code

Boolean comparison Positional encoding
cmp LT rx , r y→ r1
cb r r1 →LT

add re , r f→ r a
br →LE

LT : add rc , rd→ r a
LE : . . .

br LT rx , r y→LT

add re , r f→ r a
br →LE

LT : add rc , rd→ r a
LE : . . .

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Boolean and Relational Values
Control-Flow

Conditional Move and Predication

Conditional move and predication can simplify this code.

Example

i f (x < y)
a = c + d ;

e l s e
a = e + f ;

Corresponding assembly code

Conditional Move Predicated Execution
cmp LT rx , r y→ r1
add rc , rd→ r2
add re , r f→ r3
cmov r1 , r2 , r3→ r a

cmp LT rx , r y→ r1
(r1)? add rc , rd→ r a
(! r1)? add re , r f→ r a

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Boolean and Relational Values
Control-Flow

Last word on boolean and relational values: consider the following
code x = (a<b) & (c<d)

Corresponding assembly code

Positional encoding Boolean Comparison
br LT ra , rb→L1

br →L2

L1 : br LT rc , rd→L3

L2 : l o a d I 0 → r x
br → Le

L3 : l o a d I 1 → r x
Le : . . .

cmp LT ra , rb→ r1
cmp LT rc , rd→ r2
and r1 , r2→ r x

Here the boolean comparison produces much better code.

Best choice depends on two things

Context

Hardware

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Boolean and Relational Values
Control-Flow

Control-Flow

If-then-else

Loops (for, while, ...)

Switch/case statements

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Boolean and Relational Values
Control-Flow

If-then-else

Follow the model for evaluating relational and boolean with
branches.

Branching versus predication (e.g. IA-64, ARM ISA) trade-off:

Frequency of execution:
uneven distribution, try to speedup common case

Amount of code in each case:
unequal amounts means predication might waste issue slots

Nested control flow:
any nested branches complicates the predicates and makes
branching attractive

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Boolean and Relational Values
Control-Flow

Loops

Basic pattern

Pre-test

Loop body

Post-test

Next block

evaluate condition before the loop
(if needed)

evaluate condition after the loop

branch back to the top (if needed)

while, for and do while loops all fit this
basic model.

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Boolean and Relational Values
Control-Flow

Example: for loop

f o r (i =1; i <100; i++) {
body

}
next stmt

Corresponding assembly

l o a d I 1 → r1
l o a d I 100 → r2
br GT r1 , r2 → L2

L1 : body
add I r1 , 1 → r1
br LT r1 , r2 → L1

L2 : nex t stmt

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Boolean and Relational Values
Control-Flow

Exercise

Write the assembly code for the following while loop:

wh i l e (x >= y) {
body

}
next stmt

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Boolean and Relational Values
Control-Flow

Most modern programming languages include a break statements

Exits from the innermost control-flow statement

Out of the innermost loop
Out of a case statement

Solution:

use an unconditional branch to the next statement following
the control-flow construct (loop or case statement).
skip or continue statement branch to the next iteration (start
of the loop)

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Boolean and Relational Values
Control-Flow

Case Statement (switch)

Case statement

sw i t c h (c) {
ca se ’ a ’ : stmt1 ;
ca s e ’ b ’ : stmt2 ; b reak ;
ca s e ’ c ’ : stmt3 ;

}

1 Evaluate the controlling expression

2 Branch to the selected case

3 Execute the code for that case

4 Branch to the statement after the
case

Part 2 is key.

Strategies:

Linear search (nested if-then-else)

Build a table of case expressions and use binary search on it

Directly compute an address (requires dense case set)

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Boolean and Relational Values
Control-Flow

Exercise

Knowing that the character ’a’ corresponds to the decimal value
97 (ASCII table), write the assembly code for the example below
using linear search.

char c ;
. . .
sw i t c h (c) {

ca se ’ a ’ : stmt1 ;
ca s e ’ b ’ : stmt2 ; b reak ;
ca s e ’ c ’ : stmt3 ; b reak ;
ca s e ’ d ’ : stmt4 ;

}
stmt5 ;

Exercise : can you do it without any conditional jumps?

Hint: use the JR MIPS instruction which jumps directly to an
address stored in a register.

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Static vs Dynamic
Data structures

Static versus Dynamic

Static allocation: storage can be allocated directly by the
compiler by simply looking at the program at compile-time.
This implies that the compiler can infer storage size
information.

Dynamic allocation: storage needs to be allocated at run-time
due to unknown size or function calls.

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Static vs Dynamic
Data structures

Heap, Stack, Static storage

Static storage:

Text: contains the instructions

Data: contains statically allocated
data (e.g. global variables, string
literals, global arrays of fixed size)

Dynamic Storage:

Stack: used for function calls, used
for local variables (if known size),
register spilling (register allocation)

Heap: used for dynamic allocation
(e.g. malloc)

high
address

low
address

stack

heap

text

data static
allocation

dynamic
allocation

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Static vs Dynamic
Data structures

Example

char c ; data
i n t a r r [4] ; data
vo id f oo () {

i n t a r r 2 [3] ; stack
i n t ∗ p t r = heap

(i n t ∗) ma l l o c (s i z e o f (i n t) ∗ 2) ;
. . .
{

i n t b ; stack
. . .
bar (” h e l l o ”) ; data

}
. . .

}

high
address

low
address

stack

heap

text

data static
allocation

dynamic
allocation

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Static vs Dynamic
Data structures

Primitive types and Arrays

Typically

int and pointer types (e.g. char∗, int ∗, void∗) are 32 bits (4
byte).

char is 1 byte

However, it depends on the data alignment of the architecture. For
instance, char typically occupies 4 bytes on the stack (if the data
alignment is 4 bytes).

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Static vs Dynamic
Data structures

Structure types

In a C structure, all values are aligned to the data alignment of the
architecture (unless packed directive is used).

s t r u c t mySt ruc t t {
char c ;
i n t x ;

} ;
s t r u c t mySt ruc t t ms ;
. . .

In this example, it is as if the value c uses 4 bytes of data.

. data
ms mySt ruc t t c : . space 4
ms mySt ruc t t x : . space 4

. t e x t
. . .

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Static vs Dynamic
Data structures

Stack variable allocation

The compiler needs to keep track of where variables are allocated
on the stack.

Problem: stack pointer can move.

Solution: use another pointer, the frame pointer

Frame pointer

The frame pointer must be initialised to the value of the stack
pointer, just when entering the function (in the prologue).

Access to variables allocated on the stack can then be
determined as a fixed offset from the frame pointer.

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Static vs Dynamic
Data structures

i n t f oo () {
. . .

}
vo id main () {

. . .
f oo (a , b)
. . .

}

The frame pointer (FP) always
points to the beginning of the local
variables of the current function,
just after the arguments (if any).

The stack pointer (SP) always
points at the bottom of the stack,
where memory is free (the stack
grows downwards).

foo

main

FP

SP

call stack

main
stack
frame

foo
stack
frame

(arguments)

local variables

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Function calls

i n t bar (i n t a) {
re tu rn 3+a ;

}
vo id f oo () {

. . .
bar (4)
. . .

}

foo is the caller

bar is the callee

What happens during a function call?

The caller needs to pass the
arguments to the callee

The callee needs to pass the return
value to the caller

But also:

The values stored in temporaries
registers needs to be saved
somehow.

Need to remember where we came
from so that we can return to the
call site.

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

General convention:

precall: pass the arguments via
dedicated registers or stack

postreturn: read the return value from
dedicated register or stack

prologue: initialised the frame pointer
and save all the temporary registers
onto the stack

epilogue: restore all the temporary
registers from the stack

precall

postreturn

call

return

...

...

prologue

epilogue

...

function foo

function bar

Other convention possible but may lead to larger code size.

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Example

int bar(int a) {

return 3+a;

}

bar:

addi $sp , $sp , -4 # decrement stack pointer by 4

sw $t0 , 0($sp) # save $t0 onto the stack

li $t0 ,3 # load 3 into $t0

add $t0 ,$a0 ,$t0 # add t0 and first argument

add $v0 , $zero ,$t0 # copy the result in return register

lw $t0 , 0($sp) # restore original $t0 from stack

addi $sp , $sp , 4 # increment stack pointer by 4

jr $ra # jumps to return address

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Example

void foo() {

...

bar(4)

...

}

foo:

...

li $t0 , 4 # store 4 into $t0

add $a0 , $zero , $t0 # copy value into argument register

jal bar # jump and link (ra=PC+8)

add $t0 , $zero , $v0 # copy returned value to $t0

...

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Final words

What if need to pass more than 4 arguments (mips only has 4
“argument” registers by convention):

Use the stack, by pushing the arguments in the precall

Read the argument from the stack using the frame pointer

What if callee makes a call to another function?

Need to save the return address of caller and frame pointer on
the stack and restore after the call (should be part of
precall/postreturn).

Christophe Dubach Compiling Techniques

Code Shapes (EaC Ch. 7))
Memory management

Function calls

Next lecture

Instruction selection

Peephole Matching

Tree-pattern matching

Christophe Dubach Compiling Techniques

	Code Shapes (EaC Ch. 7))
	Boolean and Relational Values
	Control-Flow

	Memory management
	Static vs Dynamic
	Data structures

	Function calls

