MEMORY MANAGEMENT

MEMORY MANAGEMENT IN C

» Memory allocation/deallocation is done differently in C as compared to what
you may be used with other languages.

e There is no automatic memory management (garbage collection) and thus th
programmer is responsible for releasing dynamically allocated memory whe
no longer needed.

» Poor memory management can lead to memory leaks — system performance
suffers as virtual memory is progressively paged to hard drive. The OS may
crash.

MEMORY ALLOCATION

» Two mechanisms are used to allocate memory in C

1. Declaring local variables. These are stored in a stack and are
automatically freed when they become out of scope (e.g. exiting a
function).

int
int
int array[100

= Nice, right? Well there's a catch. The compiler needs to know in advance
how much memory to allocate (inefficient) and the stack size is limited
(not all your variables may fit).

MEMORY ALLOCATION

 Two mechanisms are used to allocate memory in C
2. Requesting memory explicitly and storing variables in the heap.

= You can allocate as much memory as the system allows, but you need to
take care of releasing it.

int
int *array

array int malloc sizeof(int

= The compiler cannot know what you intend to do and thus will not releass
it automatically. You have to do it manually when done:

free(array

SEGMENTATION FAULT &CO
A few things can go wrong if not careful with variables allocated on the heap.

 Memory leaks — you forget to call free () when variables no longer needed.

» You try to free, but allocation failed or memory already deallocated.

char *fileName = malloc(255*sizeof(char));
if (fileName '= NULL) {

%}ée(fileName);

}

e You write beyond the allocated length (corruption)

char *temp = malloc(64*sizeof(char));
memcpy (temp, data, datalen); // datalen > 64 gives gives error

SEGMENTATION FAULT & CO

» You use an out of bounds array index

int *array = malloc(128*sizeof(int));
int N = 200;

for (1 =0; i <N; i++) { // once i > 127, an error will occur

}

e You use an address, but memory has not been allocated

struct *listElement;
x = listElement->value;

SEGMENTATION FAULT & CO

e You return a pointer to a variable from the stack

int *getCount() {
int n; // Local stack variable

// count the number of values that
// divide by x in an array

return &n;

}

int main(void){
int *n;

ﬁ.é getCount(); // Stack given up by getCount(),
// &1 no longer safe

. // n may be corrupt when needed later

GARBAGE COLLECTION?

WHY NO GARBAGE COLLECTION IN C?

o Garbage collection involves constructing a complex data structure for keepin,
track of allocations and references counting.

e This mechanism increases the complexity of the language and affects the
performance (overhead).

» Cis meant for designing very fast code, e.g. for operating systems, device
drivers, etc.

» High performance is traded for convenience.

ARRAY & STRING HANDLING

ALLOCATING ARRAYS & MATRICES

We discussed how you can allocate memory dynamically for an array of N
elements.

int N;
int *array;

array = (int *) malloc(N * sizeof(int));

But, how do you allocate memory for a matrix?

Common mistake

int N;
int **matrix;

matrix = (int **) malloc(N * N * sizeof(int));

MATRIX ALLOCATION

Remember, you are trying to allocate a pointer to an array of pointers to intege:

47

J

L

MATRIX ALLOCATION
Approach 1

int i,N;
int **matrix;
matrix = (int **) malloc(N * sizeof(int*)); // rows
for(i = 0; i < N; i++)
matrix[i] = (int *) malloc(N * sizeof(int)); // columns

// access the (i,j) element by
matrix[i][]j] = ...

Approach 2 (define the matrix as an array)

int i,N;
int *matrix;

matrix = (int *) malloc(N * N * sizeof(int));

// and access the (i,j) element by
matrix[i*N+j] = ...

MATRIX DEALILOCATION

When using the first approach, first deallocate the memory allocated for each
row

for(i = 0; 1 < N; i++)
free(matrix[1i]);
free(matrix);

When using the second approach, simply

free(matrix);

WHAT ABOUT ARRAYS OF STRUCTURES?

e Imagine the following

typedef struct {
int groupSize;
float* marks;
} GROUP;

int nGroups = 5;
GROUP *g;

» The same principle applies

g = (GROUP *) malloc(nGroups * sizeof(GROUP));
for (1 = 0; 1 < nGroups; i++) {
fscanf(stdin, "%d", &g[i].groupSize);
g[i].marks = (float *) malloc(g[i].groupSize * sizeof(float));

STRING HANDLING

» Strings are simply arrays of characters terminated by the ASCII null characte

"\O'.

char
char string[100

char malloc(100*sizeof (char

o C provides a set of functions in the standard library, that are useful for
manipulating strings.

» Typical operations: copying, tokenizing, comparing, searching, etc.

» Most of these are given in the <string.h> header file, but a few exist in
<stdlib.h> as well.

FUNCTIONS YOU MAY USE
* Copying

char* strcpy(char const char

Copies src to dst including the terminating '\0' character. Returns dst.

char* strncpy(char const char int

Copies at most len characters from sre to dst. Appends "\0' to the copied
characters if the length of sre is less than len. Returns dst.

NB: careful with sizes to avoid memory corruption.

FUNCTIONS YOU MAY USE

 Comparing

int strcmp(const char const char

Returns:
= <O if the first character that does not match has a lower value in stri1 thar

in strz2;
= 0 if the contents of both strings are equal,

= >0 if the first character that does not match has a greater value in stri1
than in str2.

FUNCTIONS YOU MAY USE

e Searching

char* strstr(const char *strl, const char *str2);

Returns: a pointer to the first occurrence of str2 in stri, or NULL if not

found.
e Examining

size t strlen(const char *str);

Returns: the length of the null-terminated string str, i.e. the offset of the
terminating '\0' character.

FUNCTIONS YOU MAY USE

» Tokenising — a string into different tokens according to some delimiter(s):

char char const char

str broken into smaller strings.

delim may contain different characters to be used as delimiters.

Returns a pointer to the last token found or NULL if none found.

Can be called multiple times to find all tokens.

FUNCTIONS YOU MAY USE

Example

const char str[100] "The quick brown fox jumps over the lazy dog";
const char delim[2] e

char *token;

token = strtok(str, delim); // gets first token

while(token != NULL) { // retrieve all tokens; stop when no more found
printf("%ss\n", token);
token = strtok(NULL, delim);

CONVERTING STRINGS TO NUMBERS

» Converting to floating-point numbers

double strtod(const char *str, char **ptr);
float strtof(const char *str, char **ptr);

Convert the initial portion of the string str to double or float. Return the
floating-point value and store in ptr the offset of the non-numerical part (if

any).
» Example:

char str[11] = "9.50 marks";
char *ptr;
float fvVal;

fVal = strtof(str, &ptr);
printf("Number:%.2f\t String:%s\n", fVal, ptr);
// Number:9.50 String: marks

CONVERTING STRINGS TO NUMBERS

o Converting to (long) integer numbers

long int const char char int

Converts the initial portion of the string str to long int according to the giver
base value. Returns the long value and stores in ptr the offset of the non-
numerical part.

» base must be between 2 and 36.

= if base is 0, the expected form is a decimal/octal/hexadecimal constant.

CONVERTING STRINGS TO NUMBERS

Example:

char str[ll] = "60 seconds";
char *ptr;
long int liVal;

lival = strtol(str, &ptr, 10);
printf("Number:%sld\t String:%s\n", liVal, ptr);
// Number:60 String: seconds

CONVERTING STRINGSTO NUMBERS

e Question: what will be the output of the following?

char *str;
double fVal;
long int liVal;

lival = strtol("20.00mm", &str, 10);
printf("Number:%ld\t String:%s\n", liVal, str);

fVal = strtod("le+2 litres", &str);
printf("Number:%.11f\t String:%s\n",fVal,str);

lival = strtol("FFGH", &str, 16);
printf("Number:%ld\t String:%s\n", liVar,str);

CONVERTING STRINGS TO NUMBERS

e Answer:
Number:20 String:.00mm
Number:100.0 String: litres
Number:255 String:GH

Note: A good resource for understanding other string manipulation functions is
available here.

http://www.tutorialspoint.com/c_standard_library/string_h.htm

CODE OPTIMISATION

CODE OPTIMISATION

» Refactoring is done in between development of new functionality
= Recall this makes it easier to test that this process has not changed the
behaviour of your code.

o This is also a good time to do some optimisation
» You should be in a good position to test that your optimisations have not
negatively impacted correctness.

WHEN TO OPTIMISE?

 When you discover that your code is not running fast enough, it's probably
wise to optimise it.

e Often this will come towards the end of the project.
e It should certainly come after you have something deployable.

» Preferably after you have developed and tested some major portion of
functionality.

APLAUSIBLE STRATEGY

» Perform no optimisation until the end of the project once all functionality is
complete and tested.

e This is a reasonable approach; however:

e During development, you may find that your test suite takes a long time to
run.

e Even one simple run to test the functionality you are currently developing
may take minutes/hours.

e This can slow down development significantly, so it may be appropriate to dc
some optimisation at that point.

HOWTO OPTIMISE

e The very first thing you need before you could possibly optimise code is a
benchmark.

e This can be as simple as timing how long it takes to run your test suite.

e O(n?) solutions will beat O(n log n) solutions on sufficiently small inputs, so
your benchmarks must not be too small.

HOWTO OPTIMISE

Once you have a suitable benchmark then you can:

1.

I

CLE S

Save a copy of your current code;

Run your benchmark and record the run time;

Perform what you think is an optimisation on your source code;
Re-run your benchmark & compare the run times;

If you successfully improved the performance of your code keep the new
version, otherwise revert changes;

Do one optimisation at a time.

HOWTO OPTIMISE

 However, bear in mind that you are writing a stochastic simulator

» This means each run is different and hence may take a different time to
run,

» Even if the code has not changed or has changed in a way that does not
affect the run time significantly.

» Simply using the same input several times should be enough to reduce or
nullify the effect of this.

PROFILING

e Profiling is not the same as benchmarking.

e Benchmarking:
» determines how quickly your program runs;

= is to performance what testing is to correctness.

e Profiling:
» is used after benchmarking has determined that your program is running
too slowly;

» is used to determine which parts of your program are causing it to run
slowly;

= is to performance what debugging is to correctness.

BENCHMARKING & PROFILING

o Without benchmarking you risk making changes to your program that will
lead to poorer performance.

» Without profiling you risk wasting effort optimising a part of code which is
either already fast or rarely executed.

Documenting: Source code comments are a good place to explain why the
code is the way it is.

