SIMULATION COMPONENTS
ROUTE PLANNING

SERVICE NETWORK

» We need an abstract representation of a street map and bus stop locations fo:
the service network.

» We need to model the roads between different locations and the time require
to travel these.

 We need to account for the fact that some streets only allow one way traffic.

EXAMPLE

1011S

ined stop locat

20 imag

>

Leith Walk area in Edinburgh

Um.om .,.wummm.

T
z
A
5 ® f
FEEY] IS 5 . ©
.._\ﬂ...tnmf £
o
#oous Hos321q i
9
. 193¢ com«u%
5
S Y]
* #9845 4 ’e
& “eoyg £ [
S < &
@
t
§ 924 tegs 8
S~ =
{93 <
L_w.m. Up O_...w
m_ . Saom
g
i & 3
) @
,osﬁorm&\ \w\ m.\: 3 m_. £
o) 13 5 [
i .\@ - wm. “ t
N V Q =]
- S I
X
G@
o 29,
Qoo» s ey
. @Qua%
49 9
Q,._J 9,
ﬁeﬁ.w ruUh\ /. d
()
3, £
3 %, % o
% % e
% ,@m%y 2 &
@ o s, &
2 s e dw_.
O S, ~
[) & %S
5 o X,
m.\@ e]
ot 9@ < x®
@A.,& 6//.”/ O;ua«u
& o
2,
(]
. m..w? D.M.x .
4..&0?0 r_.«ﬁ\
)
ev \o.mu
$© o
i .J.,/m/@ s

Map source: bing.com

GRAPH REPRESENTATION

» In mathematical terms such a collection of bus stops interconnected with
street segments can be represented through a graph.

e A graph G = (V,E) comprises a set of vertices V that represent objects (bus
stops) and E edges that connect different pairs of vertices (links/street
segments).

» Graphs can be directed or undirected.

UNDIRECTED GRAPHS

e Edges have no orientation, i.e. they are unordered pairs of vertices. That is
there is a symmetry relation between nodes and thus (a,b) = (b,a).

DIRECTED GRAPHS

» Edges have a direction associated with them and they are called arcs or
directed edges.

» Formally, they are ordered pairs of vertices,
i.e. (a,b) # (b,a) if a + b.

GRAPH REPRESENTATION IN YOUR SIMULATORS

e For our simulations we will consider directed graph representations of the
service network.

» This will increase complexity, but is more realistic.

BACKTOTHE EXAMPLE

L
@
S
vy
o
[e)
vy
v
&
lona Street .
o

* -
S
h.- ..L.@O \.m; m
m‘o &
& 199 5
& 1S ue 2
S o/s %
193,
AN
“€0s 3
3 < ”
T
m_ &
o
& —
ofies \V\ S g !
@ﬁ (¢4 m oy m“_ 5
& N 3 5 &
o 4 3 <
\ o . & 3 5
///O ’ Vwa m..a =
© i |
aooz
/VAnu h.ww 7
S Ay var.
e O
g
23,
S
% . 5&
’ %, %
J
. . & o
% i >
3 Aay S
;va ./m,@wf 2 & m
N . g
A iy 7 ,d.d.
. @a(so ER
2
X o X
e® 2
A 0@ waﬂ,w nu;wﬁ
&° o//A/ W
£ N

This area...

193l

ing.com

b

Map source

CORRESPONDING GRAPH

...can be represented by

We numbered vertices & added node '0' for the garage.

WEIGHTED GRAPH

 We also need to model the distances between stop locations.

» We will use a weighted graph representation, where a number (weight) is
associated to each arc.

e In our case weights will represent the average travel duration between two
stops (vertices) in one direction, expressed in minutes.

WEIGHTED GRAPH

For our example, this may be

LR

INPUT SCRIPT

o Graph representation of the bus stop locations and distances between them
will be given in the input script in matrix form.

» We will consider the garage as bus stop 0. For a service network with N stops
a N x N matrix will be specified.

e The map keyword will precede the matrix.

» Where there is no arc in the graph between two vertices we will use a -1 value
in the matrix.

FOR THE PREVIOUS EXAMPLE

- e - O

*Note that the matrix is not symmetric.

ROUTE PLANNING

» Minibuses may be scheduled depending on different parameters:
1. The maximum time a user is willing to wait (maxDelay).

2. The difference between desired departure time of a user (related to
pickupInterval) and the time of the request (related to
requestRate).

» Based on a set of requests, you must compute the shortest routes that pick ug
and drop off the largest possible number of passengers that intend to take
similar journeys.

ROUTE PLANNING

e There may not be passengers boarding/disembarking at all the bus stops
along a route.

e Thus it may be appropriate to work with an equivalent graph where vertices
that do not require to be visited are isolated and equivalent arc weights are
introduced.

» Sometimes it may be more efficient to travel multiple times through the sams
location, even if the route previously serviced passengers who had placed
requests there.

THE (MORE) CHALLENGING PART

e Let's refer to the graph of all bus stops where service is required at a given
time by "service graph".

» How to partition the service graph and find (almost) optimal routes that visit
all vertices in the service graph with minimum cost?

o This is entirely up to you, but I will discuss some useful aspects next.

e You must justify your choice in the final report and comment appropriately
the simulator code.

 You may wish to implement more than one algorithm.

USEFULTERMINOLOGY

» A walk is a sequence of arcs connecting a sequence of vertices in a graph.

e A directed path is a walk that does not include any vertex twice, with all arcs
in the same direction.

e A cycle is a path that starts & ends at the same vertex.

O~ICAN

directed paths / cycle

USEFULTERMINOLOGY

e A trail is a walk that does not include any arc twice.

e A trail may include a vertex twice, as long as it comes and leaves on different
arcs.

e A circuit is a trail that starts & ends at the same vertex

trail / circuit (tour)

SHORTEST PATHS

e There may be multiple paths that connect two vertices in a directed graph.

» In a weighted graph the shortest path between two vertices is that for which
the sum of the arc costs (weights) is the smallest.

SHORTEST PATHS

» There are several algorithms you can use to find the shortest paths on a giver
service network.

» A non-exhaustive list includes
= Dijkstra's algorithm (single source),
» Floyd-Warshall algorithm (all pairs),
= Bellman-Ford algorithm (single source).

» Each of these have different complexities, which depend on the number of
vertices and/or arcs.

e The size and structure of the graph will impact on the execution time.

FLOYD-WARSHALLALGORITHM

» A single execution finds the lengths of the shortest paths between all pairs of
vertices.

» The standard version does not record the sequence of vertices on each
shortest path.

e The reason for this is the memory cost associated with large graphs.

 We will see however that paths can be reconstructed with simple
modifications, without storing the end-to-end vertex sequences.

FLOYD-WARSHALLALGORITHM

e Complexity is O(IN3), where N is the number of vertices in the graph.
The core idea:

* Consider dj j k to be the shortest path from i to j obtained using intermediary
vertices only from a set {1,2,...,k}.

* Next, find dj j k+1 (i-e. with nodes in {1,2,...k+1}.
= This could be dj j k+1 = dj j,k or

= A path from vertex i to k+1 concatenated with a path from vertex k+1 toj.

FLOYD-WARSHALL ALGORITHM

e Then we can compute all the shortest paths recursively as

di j k+1=min(d;j k, di fe+1,k + dk+1,,k)-
» Initialise dj j o = wj j (i.e. start form arc costs).

 Remember that in your case the absence of an arc between vertices is

represented as a -1 value, so you will need to pay attention when you comput:
the minimum.

EXAMPLE

First let's increase vertex indexes by one, since we were starting at 0.

EXAMPLE (CONTD)

W\
G (=
@—»@
HENGRGENGERG
B~ (e(t)—e(y)
O OB anaOnegOnngO
=) OO
(5" (2) ks
() 22—
() @)=
(8 (22w —s(y)

OO O OO

EXAMPLE (CONTD)

(=23 () M

O e e s e e
S

OO+ %@M

k=4

oo T i OFveoE O]
o e g
B 2 ee) el

All shortest paths found at this step.

PSEUDOCODE

Denote d the N x N array of shortest path lengths.
Initialise all elements in d with inf.

For i =1 to N
For j =1 to N
diil[j] « w[il[]j] // assign weights of existing arcs;

For k =1 to N
For i =1 to N
For j =1 to N
If d[i][j] > d[i][k] + d[k][j]
dli][j] « d[i][k] + d[K][]]
End If

FLOYD-WARSHALLALGORITHM

o This will give you the lengths of the shortest paths between each pair of
vertices, but not the entire path.

» You do not actually need to store all the paths, but you would want to be able
to reconstruct them easily.

» The standard approach is to compute the shortest path tree for each node, i.e
the spanning trees rooted at each vertex and having the minimal distance to
each other node.

PSEUDOCODE

Denote d, nh the N x N arrays of shortest path lengths and
respectively the next hop of each vertex.

For i =1 to N
For j =1 to N
dlil[j] « w[il[]j] // assign weights of existing arcs;
nh[i][j] «]

For k =1 to N
For i =1 to N
For j =1 to N
If d[i][j] > d[i][k] + d[k][]]
dli][j] « d[i][Kk] + d[Kk][]]
nh[i][j] « nh[j][K]
End If

RECONSTRUCTING THE PATHS

To retrieve the sequence of vertices on the shortest path between nodes i and j,
simply run a routine like the following.

path « 1
While i = j
i« nh[i][j]
append i to path
EndWhile

FINDING OPTIMAL ROUTES GIVEN A SET OF USER REQUIREMENTS

» Finding shortest paths between different bus stops is only one component of
route planning.

e The problem you are trying to solve is a flavour of the Vehicle Routing
Problem (VRP). This is a known NP-hard problem.

» Simply put, an optimal solution may not be found in polynomial time and the
complexity increases significantly with the number of vertices.

HEURISTIC ALGORITHMS

Heuristics work well for finding solutions to hard problems in many cases.
Solutions may not be always optimal, but good enough.
Work relatively fast.

When the number of vertices is small, a 'brute force' approach could be
feasible.

Guaranteed to find a solution (if there exists one), and this will be optimal.

CHOOSING ROUTE PLANNING ALGORITHMS

» You have complete freedom to choose what heuristic you implement, but

» make sure you document your choice and discuss its implication on system’s
performance in your report.

e It is likely that you will need to compute shortest paths.

e Again, you can choose any algorithm for this task, e.g. Floyd-Warshall,
Dijkstra, etc., but explain your choice.

e You can implement multiple solutions, as some may not work for any graph «
will perform poorly.

