
COMPUTER SCIENCE
LARGE PRACTICAL

INTRODUCTION

Paul Patras

HOUSEKEEPING
Web:

One lecture per week

When: Fridays, 12:10–13:00

Where: Old Infirmary (Geography) building -
Room 2.19 (Old Library) – this may change!

Please ask questions at any time

Coursework accounts for 100% of your mark

Office hours: flexible, but email me first
(paul.patras@ed.ac.uk)

http://www.inf.ed.ac.uk/teaching/courses/cslp/

Map

http://www.inf.ed.ac.uk/teaching/courses/cslp/
http://www.ed.ac.uk/maps?building=institute-of-geography

RESTRICTIONS (I)
CSLP is a third-year undergraduate course only
available to third-year undergraduate students.

CSLP is not available to visiting undergraduate
students, or to fourth-year undergraduate students
and MSc students, who have their own individual
projects.

RESTRICTIONS (II)
Third-year undergraduate students should choose at
most one large practical, as allowed by their degree
regulations.

Computer Science, Software Engineering and
Artificial Intelligence large practicals.

On most degrees a large practical is compulsory.

On some degrees (typically combined Hons) you can
do the System Design Project instead/additionally.

See in the
for

clarifications.

Degree Programme Tables (DPT) Degree
Regulations and Programmes of Study (DRPS)

http://www.drps.ed.ac.uk/15-16/dpt/drps_inf.htm
http://www.drps.ed.ac.uk/

CLARIFICATIONS
SELP is not offered this year, due to a number of
unforeseeable circumstances.

The School of Informatics apologises for this, and has
put an important concession in place (I will come back
to this shortly).

Still, you will make extensive use of skills in the
engineering of software through the CSLP.

ABOUT THIS COURSE
So far most of your practicals have been small
exercises

This practical is larger and less rigidly defined than
previous course works.

The CSLP tries to prepare you for
The System Design Project (in the second semester);

The Individual Project (in fourth year).

REQUIREMENTS
There is:

a set of requirements (rather than a specification);

a design element to the course; and

more scope for creativity.

The requirements are more realistic than most
coursework,

But still a little contrived in order to allow for grading.

HOW MUCH TIME SHOULD I SPEND?
100 hours, all in Semester 1, of which

8 hours lecture/demonstrating,

92 hours practical work.

HOW MUCH TIME IS THAT REALLY?
12 weeks remaining in semester 1 (Weeks 2 to 13).

7.5 * 12 = 90 hours.

You can think of it as 7.5 hours/week in the first
semester.

This could be one hour a day including weekends.

You could work 7.5 hours in a single day,
for example work 9:00-17:30 with an hour for lunch.

MANAGING YOUR TIME
It is unlikely that you will want to arrange your work on
your large practical as one day where you do nothing
else, but one day per week all semester is the amount of
work that you should do for the course.

Course lecturers have been asked not to let deadlines
overlap Weeks 11-13 because students are expected to
be concentrating on their large practical in that time.

The Computer Science Large Practical has two parts:

DEADLINES

Part 1
Deadline: Thursday 22nd October, 2015 at 16:00

Part 1 is zero-weighted: it is just for feedback.

Part 2
Deadline: Thursday 17th December
Monday 21st December, 2015 at 16:00

Part 2 is worth 100% of the marks.

SCHEDULING WORK
It is not necessary to keep working on the project right
up to the deadline.

For example, if you are travelling home for Christmas
you might wish to submit the project early.

In this case ensure that you start the project early.

The coursework submission is electronic so it is
possible to submit remotely,

But you must make sure that your submission works
as expected on DiCE.

This might be easier to do locally, but see
 and

working
remotely remote graphical login.

http://computing.help.inf.ed.ac.uk/remote-working
http://computing.help.inf.ed.ac.uk/nx/

EARLY SUBMISSION
CONCESSION

As compared to last year, work submitted less than a
week before the deadline will not be capped at 90%.

This year you will be benefiting from 1 week+ to work
full time on the course after lectures have finished.

This is incredibly rare in the current university calendar
and especially valuable for projects!

EXTENSIONS
Do not ask me for an extension as I cannot grant them.

The correct place is the who will pass this on to the
year organiser

See the first.

ITO
(Vijay Nagrajan).

policy on late coursework submission

http://web.inf.ed.ac.uk/infweb/student-services/ito/contacts
http://www.inf.ed.ac.uk/people/staff/Vijayanand_Nagarajan.html
http://web.inf.ed.ac.uk/infweb/student-services/ito/admin/coursework-projects/late-coursework-extension-requests

THE COMPUTER SCIENCE
LARGE PRACTICAL

THE CSLP REQUIREMENT
Create a command-line application in C.

The purpose of the application is to implement a
stochastic, discrete-event, discrete time simulator

(I'll come back to these terms).

This will simulate an on-demand public transport
system for future cities, with stop locations, minibus
capacities, user behaviour, etc. specified by input.

THE CSLP REQUIREMENT (C'TND)
The output will be the sequence of events that have
been simulated, as well as some summary statistics.

Input and output formats, and several other
requirements are specified in the coursework handout.

It is your responsibility to read the requirements
carefully.

WHY SIMULATORS?
Stochastic simulation is an important tool in physics,
medicine, computer networking, logistics, and many
other fields.

Particularly useful to understand complicated
processes.

Can save time, money, effort and even lives.

Allow running inexpensive experiments of exceptional
circumstances that might otherwise be infeasible.

However, the simulator must have an appropriate
model for the real system under investigation, to
produce meaningful results.

Last year that in the U.S. Verizon
dumped 15,000 Internet destinations for ~10 minutes.

EXAMPLE: PREVENTING INTERNET
OUTAGES

Source: Internet Census –World map of 24 hour relative average utilization of IPv4 addresses.

CBC news reported

http://www.cbc.ca/news/technology/internet-outages-slowness-spike-expected-with-512k-1.2737819

PREVENTING INTERNET OUTAGES
Global Internet routing table has passed 512K routes.

Older routers have limited size routing tables; when
these fill up, new routes are discarded.

Large portions of the Internet become unreachable,
thus online businesses are loosing money.

Upgrading equipment is expensive and takes time;
workarounds are being proposed.

Ensuring the proposed solutions will work is not trivial.

PREVENTING INTERNET OUTAGES
Testing patches in live networks poses the risk of
further disruption.

Waiting for the next surge is not acceptable.

Forwarding all traffic for new routes through a default
interface has serious implications on routing costs.

With simulation it is possible to generate synthetic
traffic and test patches without disrupting the
network.

It is also possible to evaluate different metrics, e.g.
round-trip delays, throughput, propagation latency of
routing changes.

WHY C?
Part of the challenge of this practical is to enhance
your skills with a procedural language widely used for
system programming.

This is something you should expect when taking a job
as a software developer in a company that has clear
incentives to use a particular language.

C is efficient (low execution time), portable, excellent
for working directly with the hardware, and also usable
for web programming.

WHY C?
Currently ranked among the most popular
programming languages -- , Sept. 2015.TIOBE Index

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

CODE SHARING
Code sharing sites are a great resource but please
refrain from using them for this practical.

This is an individual practical so code sharing is not
allowed. Even if you are not the one benefiting.

It is somewhat likely that in the future you will be
unable to publicly share the code you produce for your
employer.

WHY SIMULATE AN ON-DEMAND
PUBLIC TRANSPORT SYSTEM?

This approach is currently considered by European city
councils as a potential major step towards eliminating
the incentives for personal car ownership.

Reduce carbon emissions in densely populated areas.

Cut down commute times & improve user satisfaction.

Limitations of current periodic scheduling practices:
Buses make unnecessary frequent trips; sometimes
take lengthy routes → increased operation costs.

User demand varies geographically and in time →
buses sometimes overcrowded.

WHY SIMULATE AN ON-DEMAND
PUBLIC TRANSPORT SYSTEM?

With simulation we can investigate the impact of
different service demand rate and acceptable pick-up
delays to trigger scheduling.

In this practical we will evaluate the efficiency of the
transportation process in terms of bus occupancy per
unit of travel time, average waiting times, etc.

Short tolerable waiting times → journeys with fewer
passengers; lesser efficiency.

Longer waiting intervals → more cost efficient, but
impacting user satisfaction.

YOUR SIMULATOR
Your simulator will be a command-line application.

It will accept an input text file with the description of
the serviced network and

a set of global parameters: minibus capacity, boarding
time, request arrival rate, departure delay, maximum
waiting time.

It should output information about occurring events.

The strict formats for both input and output are
described in the

You will also need to produce summary statistics that
you will later analyse.

coursework handout.

http://www.inf.ed.ac.uk/teaching/courses/cslp/handout/cslp-2015-16.pdf

The underlying simulation algorithm is fairly simple:
WHILE {time ≤ max time}
 determine the set of events that may occur after the current state
 delay ← choose a delay based on the nearest event
 time ← time + delay
 modify the state of the system based on the current event
ENDWHILE

SIMULATION ALGORITHM

WHILE {time ≤ max time}
 ...
 delay ← choose a delay based on the nearest event
 ...
ENDWHILE

 −(mean) ∗ log(random(0.0, 1.0))

SIMULATION ALGORITHM

Some events are deterministic, some occur with
exponentially distributed delays.

I'll explain this in more details, but for now drawing
from an exponential distribution can be done by:

Where mean is the average delay, which is the
reciprocal of the rate.

COMPONENTS OF THE SIMULATION

INPUT - GLOBAL PARAMETERS
1. Mini bus capacity

2. Boarding/disembarking time

3. Request rate

4. Pick up interval

5. Maximum admissible delay

6. Number of buses

7. Number of stops

8. Matrix representation of the service network

COMPONENTS OF THE SIMULATION

STOPS
Passengers only board or disembark at designated
minibus stops.

Consider users book journeys through e.g. a
smartphone application and do not necessarily need
to be present at a bus stop.

New requests are 'queued' at bus stops.

We are only interested in the back-end (thus will not
develop a user app).

COMPONENTS OF THE SIMULATION

USERS
We consider users place requests at exponentially
distributed time intervals (with a given mean).

Randomly choose departure and arrival stops.

Chosen a desired boarding time that is an
exponentially distributed delay after the request time
(mean also given as an input parameter).

Can tolerate a maximum delay after the desired
departure time (also given as input).

COMPONENTS OF THE SIMULATION

MINIBUSES
Have fixed passenger capacity (given as input).

Time to board/disembark a passenger is constant (and
given as input).

Scheduling and route calculation are things you have
to decided on.

COMPONENTS OF THE SIMULATION

SERVICE NETWORK
We consider a directed graph representation of the
bus stop locations and the distances between them.

The graph is given as an input in matrix form.

The distances between any two locations are
expressed in minutes.

EXAMPLE

map
 0 3 -1 -1 -1 4
 3 0 5 -1 -1 -1
-1 -1 0 2 -1 -1
-1 -1 -1 0 2 2
-1 1 -1 -1 0 -1
 4 -1 -1 2 4 0

EXAMPLE
Matrix representation

COMPONENTS OF THE SIMULATION

ROUTE PLANNING
The start of a minibus journey can be triggered with
any delay.

Routes of minibuses already in services can be
modified as long as this will not alter previously agreed
departures.

Ensure capacity is not exceeded.

COMPONENTS OF THE SIMULATION

ROUTE PLANNING
Goal: Find the shortest routes that pick up and drop off
the largest possible number of passengers that intend
to take similar journeys.

How you achieve this task is your design choice.

This is a non-trivial problem, so exploring different
heuristics is appropriate.

COMPONENTS OF THE SIMULATION

EVENTS
Your simulator will produce a sequence of events

New user places a request;

Request is scheduled for departure at a time instant;

Request cannot be accommodated;

Minibus leaves/arrives at a location;

A passenger boards / disembarks;

Minibus occupancy changes.

‹time› -> new request placed at stop ‹unsigned int› for departure
 at ‹time› scheduled for ‹time›
‹time› -> new request placed at stop ‹unsigned int› for departure
 at ‹time› cannot be accommodated
‹time› -> minibus ‹unsigned int› arrived at stop ‹unsigned int›
‹time› -> minibus ‹unsigned int› left stop ‹unsigned int›
‹time› -> minibus ‹unsigned int› boarded passenger at
 stop ‹unsigned int›
‹time› -> minibus ‹unsigned int› disembarked passenger at
 stop ‹unsigned int›
‹time› -> minibus ‹unsigned int› occupancy became ‹unsigned int›

COMPONENTS OF THE SIMULATION

EVENTS
Your simulator will output a sequence of events in the
following format:

COMPONENTS OF THE SIMULATION

EVENTS
Depending on the actual event in your simulation, you
will replace the variables with real values, e.g.:

This is valid output in the sense that it is formatted
correctly, but may be invalid for semantic reasons.

00:01:20:00 -> new request placed at stop 2 for departure
 at 00:01:32:00 scheduled for 00:01:33:00
00:01:25:10 -> new request placed at stop 3 for departure
 at 00:01:34:00 scheduled for 00:01:36:00
00:01:28:00 -> minibus 1 left stop 1
00:01:33:00 -> minibus 1 arrived at stop 2
00:01:33:10 -> minibus 1 boarded passenger at stop 2
00:01:33:10 -> minibus 1 occupancy became 4
...

IMPORTANT!
Part of your code will be subject to automated testing.

Strictly abiding to the input/output specification and
command line formatting is mandatory.

Your code may be functional, but you will lose points if
it fails on automated tests.

This is something you should expect with the
evaluation of commercial products as well.

PART ONE & PART TWO ASSESSMENTS
Part one, is just for feedback. You only need to have a
working simulator

For part two, there are additional requirements:
Full functionality should be implemented.

Summary statistics, such as trip efficiency, should be
produced.

Experimentation support, e.g. varying the fleet size to
see how this impacts different metrics.

Validation, checking that the input is valid.

PART ONE & PART TWO ASSESSMENTS
These are all specified in the coursework handout,
available at:

This was a brief summary of the major components of the
simulation.

It is no substitute for reading the coursework handout.

Try to submit an alpha version of your simulator for part 1; it
carries zero weight, but will help you for part 2!

http://www.inf.ed.ac.uk/teaching/courses/cslp/handout/cslp-
2015-16.pdf

http://www.inf.ed.ac.uk/teaching/courses/cslp/handout/cslp-2015-16.pdf

