
SURVEY SUMMARY
Why didn't we have this online: Typically more feedback received when survey
done in class, rather than online.

Level of challenge: mixed feelings
on average happy with the level of challenge;

some would prefer slightly less challenging course – more support from us
(check updated website) + better time management from you.

some would prefer a more challenging course – action point for me: give
pointers to advanced resources.

SURVEY SUMMARY
Things that work well:

Weekly tests (++);

Lectures/tips on different aspects of CSLP/ parts not understood by most
people;

Support on Piazza.

SURVEY SUMMARY
Improvements (I):

More info on testing – a short discussion today;

More testing + info about schedule

Every Sunday;

Additional testing before deadlines – Part 2 on Wed;

Future: token based system.

Creating simulation states – quite specific, happy to chat during office hours;

Weekly lab: something for the DoT;

SURVEY SUMMARY
Improvements (II):

More clarity on valid/invalid input and what is being tested;

I gave an overview of what we are testing for Part 2 during last lecture;

Precise instructions would remove much of the personal contribution and
diminish learning outcomes;

In the future we may consider a set of known tests (e.g. 70%) and completely
hidden ones (30%).

SURVEY SUMMARY
Too much (?):

Software engineering aspects;

Pre-course survey suggested class interest in code optimisation;

Some responses asked precisely for more info about testing (which is SE
related);

DESIGN ASPECTS

SYSTEM/PROCESS IMPLEMENTATION

Designing and implementing logistics operations, complex processes, and
systems involves several steps.

There is often a feedback loop involved, which allows to refine/improve/extend
the system.

REQUIREMENTS ANALYSIS

Understand the problem domain and specifications, and identify the key
entities involved.

Build an abstract representation of the system to be able to handle various input
scenarios.

SYSTEM DESIGN

Divide the system into components; choose suitable methodologies for
implementing each component.

Define appropriate data structures, input/output formats, and so on.

DEVELOPMENT

This is the actual implementation work and is typically coupled with some
preliminary testing.

For source code, janitorial work, refactoring and some optimisations are also
performed at this stage.

TESTING

Validation is performed once the system is partially/ entirely developed; also
benchmarking and profiling.

A system's performance evaluation is undertaken (experimentation with
different inputs, distributions).

DEPLOYMENT

Once the tool (planner, simulator, etc.) has been thoroughly tested it can be
deployed in a real setting.

The input will be based on actual data and inputs may change over time (e.g.
based on certain events).

MONITORING

Once the system is operational, it is possible to gather real measurements and
use those to refine the design.

If new requirements are identified during operation, the system can be further
extended.

THE BIN SERVICE PROCESS

Your simulator will be implementing a good bit of what could become a real
logistics system.

Unfortunately you will not have the opportunity to experiment with real data,
but (time permitting) you have the flexibility to develop additional features.

PERFORMANCE EVALUATION

We have discussed the requirements, as well as different design and
development aspects for your simulator.

We will now look into performance evaluation issues. Some of the things I will
present may not be needed for this assignment, but will likely prove useful later.

PERFORMANCE EVALUATION

Generally speaking, this is about quantifying the performance of a system.

The first step is to identify the relevant metrics, i.e. measurable quantities that
capture properties of interest.

This could the throughput of a network link, the power consumption of a
mobile device, the memory used by a software application, etc.

For CSLP we are interested in the average trip duration, number of trips per
schedule, trip efficiency, average volume collected, percentage of overflowed
bins.

METRICS

It is essential to understand the performance evaluation goals, i.e. whether a
metric should be small or large.

It is also important to be aware of the goals of the evaluation:

Improve the dimensioning/parametrisation of a system or process.

Compare how different designs perform under different inputs and chose
the best one.

METHODOLOGIES

When designing a system, performance evaluation can be conducted through one
or more of the following methodologies:

1. Numerical analysis - plugging some numerical values into a mathematical
model of the system and computing the metrics of interest.

2. Simulation - constructing a simplified model of a more complex real system
and simulating its behaviour; typically fast, but neglecting certain practical
aspects.

3. Experimentation - Analysing the performance of a system via measurements.
Assessing performance under exceptional circumstances may be infeasible.

ACCURACY

It is advisable that the assumptions made for the evaluation campaign are well
documented, to ensure the tests performed are reproducible.

You are working with a stochastic simulator and thus there will be some
variability in the results of different tests with the same input.

For this practical you have been asked to give average values of a set of metrics.

In rigorous studies, it is necessary to also provide some confidence intervals for
the results.

SUMMARY STATISTICS

Histograms are graphical representations of the distribution of a set of
measurements.

Example: distribution of the h-index of Nobel-prize recipients in Physics
between 1985-2005.

Source: J.E. Hirsch, "An index to quantify an individual's scientific research
output", Proc. NAS, 2005.

h-index: number of papers with h or more citations.

HISTOGRAMS

In mathematical terms, the histogram is a function that counts the number of
observations in different categories (bins – not to be confused with waste bins
in simulator)

The number of bins is typically computed as

where n is the number of samples in the data set .

k =
max(x) − min(x)

n
‾√

x

MEAN AND STANDARD DEVIATION

Computing the mean (average) of a set of measurements is straightforward:

The standard deviation gives a measure of the variation of the measurements
from the mean:

μ =
1

n ∑
i=1

n

xi

σ = (− μ
1

n ∑
i=1

n

xi)2
‾ ‾‾‾‾‾‾‾‾‾‾‾‾

⎷

CONFIDENCE INTERVALS

These can be used to quantify the uncertainty about the average of a set of
measurements subject to randomness.

When computing averages across multiple simulations, you are gathering
samples to estimate an unknown population mean.

You choose the significance level that will reflect how confident you can be that
the true value lies within that interval,

E.g. for a significance level of 0.05, you will obtain a 95% confidence interval
(typically used in practice).

CONFIDENCE INTERVALS

The width of the confidence is affected by:

sample size,

population variability (standard deviation),

confidence level chosen.

Central Limit Theorem: For a large sample size, the sampling distribution of the
mean will approach a normal distribution.

The sample mean and the mean of the population are identical.

CONFIDENCE INTERVALS

A quick method to compute a CI is:

where is the critical coefficient corresponding to a confidence level ; and is
obtained from z-score tables.

Example: Sample size 20, mean 10, standard deviation 1.45, 95% confidence
level, i.e. a critical coefficient corresponding to a z-score of 0.475, which is 1.96.

CI is 20±0.02

i.e. [19.8, 20.2]

μ ± zα/2

σ

n
‾√

zα/2 α

CONFIDENCE INTERVALS

Plotting CIs

NOTES ON UNIT TESTING

UNIT TESTING

This refers to testing different components (units) you develop;

More common in large collaborative projects where different people are
responsible for different (independent) functionality;

Goal: verify that a particular component works as expected:

The output returned makes sense / is correct;

Errors are handled appropriately.

Typically involves writing a tests suite, which one can run at any stage.

UNIT TESTING

If you later decide to add more functionality, well tested code will allow you to
easily identify limitations of the new features.

You will probably develop separate new tests for the new features.

The only cost is time: you need time to write these tests, but the quality of the
resulting software may be worth it.

WHAT'S INVOLVED

Many languages offer unit testing frameworks
– see list .

Sometimes use stubs / mock objects to isolate a particular unit of work you
want to test.

The idea is to implement some abstract interface that simply allows the
component you are testing to work, without actually doing anything.

Similarly you may also implement drivers, which primarily call the unit you
want to test.

here

https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

A JAVA EXAMPLE

Suppose you want to test this:

public class Summator{
 public int computeSum(int[] values) {
 int sum = 0;
 for (int item : values)
 sum += item;
 return sum;
 }
}

A JAVA EXAMPLE

Prepare the test

import static org.junit.Assert.assertEquals;
import org.junit.Test;

public class TestOne {
 @Test
 public void checkResult() {
 Summator s = new Sumator();
 int[] numbers = {1,2,3,5,7};
 int result = s.computeSum(numbers);
 assertEquals(18, result);
 }
}

A JAVA EXAMPLE

Running the test outputs

iJUnit version 4.12
.
Time: 0,006

OK (1 test)

A JAVA EXAMPLE

Assuming you modify the code of the 'Summator' (e.g. return before computing
anything) and then re-run the test:

This tells you the number of failures, where the problems were, and what went
wrong.

JUnit version 4.12
.E
Time: 0,007
There was 1 failure:
1) checkResult(TestOne)
java.lang.AssertionError: expected:<18> but was:<0>
 at org.junit.Assert.fail(Assert.java:88)
 ...

FAILURES!!!
Tests run: 1, Failures: 1

FINAL REMARKS

Admittedly you may not need sophisticated unit testing for CSLP, but if you
want to learn more, the is a good place to start.

 gives you the Python version of JUnit. Similar frameworks available for
other languages.

You may even want to take a test driven development (TDD) approach, i.e. write
a test; see the code fail; write code to pass the test; repeat.

JUnit wiki

PyUnit

https://github.com/junit-team/junit4/wiki
https://docs.python.org/2/library/unittest.html

