
GRAPH TRAVERSAL



PATH FINDING AND GRAPH TRAVERSAL

Path finding refers to determining the shortest path between two vertices in a
graph.

We discussed the Floyd–Warshall algorithm previously, but you may achieve
similar results with the Dijkstra or Bellman-Ford algorithms.

Graph traversal refers to the problem of visiting a set of nodes in a graph in a
certain way.

You can use depth- or breadth-first search algorithms to traverse an entire
graph starting from a given "root" (source vertex).



PATH FINDING AND GRAPH TRAVERSAL

Today we will discuss some heuristics for finding circuits (tours) on graphs.

We are particularly interested in finding circuits that also have minimum cost.

Remember that circuits can include the same vertex twice, but arcs only once.

You may want to perform some pre-processing on the graph to handle such
restrictions.



TERMINOLOGY: HAMILTONIAN CIRCUIT

A Hamiltonian circuit is a path that visits every vertex exactly once and starts
at ends at the same vertex

NB: Not all graphs may have a Hamiltonian circuit



MINIMUM COST HAMILTONIAN CIRCUIT

In a weighted graph, the minimum cost Hamiltonian circuit is that where the
sum of the arc weights is the smallest.

Finding the minimum cost Hamiltonian circuit on your bin service graphs is
one option for route planning.

Finding a Hamiltonian circuit can be difficult. This is a known NPcomplete
problem. Simply put, the problem may not be solvable in polynomial time and
the complexity increases with the number of vertices.



HEURISTIC ALGORITHMS

Heuristics work quite well for finding (no always optimal, but good) solutions,
most of the time.

Work relatively fast.

Popular heuristics for finding minimum cost Hamiltonian circuits:

Nearest Neighbour Algorithm

Sorted Edges Algorithm



NEAREST NEIGHBOUR ALGORITHM

Nearest Neighbour is a greedy algorithm – at every step it chooses as the next
vertex the one connected to the current through the arc with the smallest
weight.

Only searches locally.

Nodes already visited are ignored.

Due to its greedy nature it may not find a solution.

Finding a solution and its total cost depends on the start vertex chosen.



EXAMPLE, STARTING AT '3'



EXAMPLE, STARTING AT '3' (NO SOLUTION)



EXAMPLE, STARTING AT '5'



EXAMPLE, STARTING AT '5' (CONT'D)





SORTED EDGES ALGORITHM

Also greedy, but has a more global view → takes slightly more time to find a
solution.

First sorts all the (directed) edges in ascending order of their weights.

Adds sorted edges one at the time, unless adding a new one leads to three arcs
entering/leaving a node, or creates a circuit that does not include all vertices.

Skips the arcs that violate these rules.

Keeps adding arcs until finding a Hamiltonian circuit (or no more arcs left).

Stops when a solution is found, even if there are arcs left.



EXAMPLE



EXAMPLE (CONT'D)



EXAMPLE (CONT'D)



No solution found.



BRUTE FORCE ALGORITHM

When the number of vertices is small, a 'brute force' approach could be feasible.

Find all paths that visit all vertices once and pick the one with the lowest cost.

Guaranteed to find a solution (if there exists one), and this will be optimal.



OTHER APPROACHES

A Hamiltonian circuit may not always be the path that visits all the vertices
and has the lowest cost.

Sometimes visiting a node more than once can give circuits that are more cost
effective.

The problem could also be seen as an instance of finding an Eulerian circuit
(cycle).



EULERIAN CIRCUITS

An Eulerian path visits every edge (arc) exactly once.

The idea dates back to birth of Graph Theory, when Leonhard Euler was asked
to determine a path that traverses all of the 7 bridges in Koenigsberg exactly
once.

Source: Nature Biotechnology



EULERIAN CIRCUITS

An Eulerian circuit begins and ends at the same vertex.

Euler realised a solution to the original problem did not exist, but found
conditions that a graph must fulfil to have Eulerian paths.

For your problem (directed graphs), it is important to know Eulerian circuits
exist if and only if every vertex has equal in degree and out degree.



EXAMPLES

Total cost: 28



HIERHOLZER'S ALGORITHM

Assuming you have verified the necessary condition the graph must meet to
have an Eulerian circuit.

Pick any vertex as a starting point.

Add arcs to build trail, until returning to the start. You cannot get stuck at other
vertices.

If there are vertices on this tour but have adjacent arcs not included, start new
trail from these.

Join the tours formed this way.



EXAMPLE



THE PROBLEM YOU ARE TRYING TO SOLVE

The graphs you will be given may not have Hamiltonian or Eulerian circuits.

Even if they do, at start of service in an area you may not need to visit ALL the
bins (vertices).

It is likely you will need to do some pre-processing, e.g.

Build complete graphs starting from the original ones.

Remove some arcs.

And work only with a subset of vertices (the bins that require service).



THE PROBLEM YOU ARE TRYING TO SOLVE

There is no BEST solution.

Depending on the graph structure/size, some may return more cost effective
circuits than others.

But may also take more time.

Try to experiment with several, but aim to have at least ONE decent
implementation.


