

Computational Systems Biology

Regulatory networks and integrated network

Hongwu Ma

Computational Systems Biology Group

19 February 2010

Outline

- The reconstruction
- Network structure
- Link regulatory network with metabolic network
- Network Motif analysis

Transcriptional regulation: biological basis

- Transcription unit: operon
- Sigma factor (rpoD, rpoS, rpoN,)
- Transcription factor (TF)
- **Promotor**
- TF binding site
- More complex in Eukaryotes •

Reconstruction of MN and TRN

P. aeruginosa

Are the orthologous genes in different organisms regulated in similar ways?

Transcriptional regulatory networks

- Can not be reconstructed directly from gene
 annotation information
- data is mainly from database which collect information from literature (for *E. coli* and *B. subtilis*)
- ChIP on chip technology for high throughput reconstruction (mainly yeast network)
- Reverse engineering from Microarray data

Available databases

- RegulonDB <u>http://regulondb.ccg.unam.mx/</u>
- Ecocyc: ecocyc.org
- DBTBS (B. subtilis): dbtbs.hgc.jp
- Prodoric Net (Prokaryote): prodoric.tu-bs.de
- TRANSFAC (Eukaryotes): www.biobase.de/pages/products/transfac.html

Mainly Use E. coli as an example

E. coli regulatory networks

E. coli regulatory network

1278 genes
2724 interactions
157 genes for TFs
382 metabolic
enzyme genes
(Blue)

Structure analysis

- Degree distribution
 - Out degree distribution follows power law: global regulators regulate many target genes
 - In degree distribution: Maximal In degree is 7. The number of regulators which regulate the same gene is limited by the number of binding sites upstream of the target gene
- Average path length: less than 2.

Modular organization: Coreperiphery structure

Core module includes the global regulators. Other modules mainly connected through it.

CSD

Matrix representation of the connectivity

Connectivity analysis

A giant weakly connected component with 1166 nodes

No strongly connected component exists, indicating no multiple gene regulatory loop exist, impling a somehow acyclic structure.

Method to find regulatory hierarchy

CSD

The nine-layer hierarchical structure

Is it a universal structure? Where is the feedback?

CSD

Feedback through metabolites

TF activity is directly affected by metabolites. No complete picture of regulation without metabolite-TF interactions.

Metabolite-TF interactions

- EcoTFs database: 50 TFs and their cofactors
- Four types of interactions
 - bind to active an activator: 20
 - bind to deactive a repressor: 14
 - Bind to deactive an activator: 5
 - Bind to active a repressor: 11
- RegulonDB: 78 interactions for 66 TFs, including 18 phosphorylation reactions. Many are phospyorylated by two component systems

CSD

Graph representation of the Feedback

CSD Feed-backs through metaboliteprotein interactions

Other regulation systems

Two component system: Two proteins work together, the Kinase senses the environmental signal and phosphorylated the regulator. (the signal pathway in bacteria)

Two component systems

26 from KEGG, including information about the environmental signal

CSD

Altogether 32 TCSs obtained from databases and literature with known function.

Small RNA mediated Fur regulation

CSD

Iron storage proteins and proteins require iron as cofactors are expressed at high iron concentration through an RyhB mediated positive regulatory mechanism in *E. coli*.

Bacteria version of RNA interference?

computational systems biology

CSD

E. Coli integrated network

Network motif analysis

Network motif: Subgraphs that appear in the network at frequencies much higher than those found in randomized networks (Shen-Oorr et al., Nature Genetics, 31:64).

Regarded as elementary building blocks of network

Milo et al. *Network motifs: simple building blocks of complex networks.* Science. 2002, 298(5594):824-7.

Three node subgraphs in the network

Network motifs in the regulatory network

Feed forward loops

712 in the network

Bi-fan motif 11935

Yellow: Bi-fan motifs

Motifs in the network

All but 11 FFLs in a giant cluster

All but 10 Bi-fan motifs in a giant cluster.

Blue: FFLs

Green: Both

The multi-layer structure determined the FFL motifs!

Two kinds of FFLs

Mangan and Alon, (2003) PNAS, 100:11980

Coherent FFLs

Direct effect of the upper regulator A on the target gene C is consistent with its indirect effect through B. Direct effect is inconsistent with the indirect effect.

Incoherent FFL

B

А

+

Motif distribution

	Coherent FFLs: 330				Incoherent FFLs: 152			
type	+	- -			+ +		+ + ↓ −	- + +
number	265	28	7	30	119	9	8	16
exampl es	flhC- fliA- fliGH	cpxR- csgD- csgA	fis- hns- cysG	fnr- narL- dcuB	crp- nagC- manX YZ	arcA- betI- betAB	ihf- flhD- nrfA	fnr- narL- moeAB

Dominant motifs!

of the target gene

Function of network motifs

Mangan and Alon, (2003) PNAS, 100:11980

Delay the responses of the target gene so that it only response to a persistent signal. Robust to noise!

How when it is like this?

Using kinetic model to study the behavior of the target gene

