

Computational Systems Biology

Reconstruction and structural analysis of metabolic networks

Hongwu Ma hma2@inf.ed.ac.uk Computational Systems Biology Group

12 February 2010

computational systems biology

Simple models

An enzyme reaction

Enzyme kinetics

 $X_0 \xrightarrow{E_1} S_1 \xrightarrow{E_2} S_2 \xrightarrow{E_3} X_1$ A linear pathway

Metabolic control analysis

3

The reality

Systems Biology: Network Reconstruction

- From part list to part organization
- Understanding the organization of the biosystem

SYSTEMS BIOLOGY

Properties of Reconstructed Networks

Bernhard Ø. Palsson

Network reconstruction: the background

- Fully sequenced genomes for several hundreds organisms
- Bioinformatics methods for gene function annotation (2D annotation)
- Public available internet database for storage and management of the annotation data

Biological networks

- Metabolic network, well studied, based on enzyme annotation (easy to reconstruct)
- Gene regulatory network: based on literature, computational prediction (motif) or ChIP on chip)
- Signal transduction network, based on literature
- Protein-protein interaction network: yeast 2 hybrid experiments, low reliability

Genome based MN reconstruction

Gene & Protein databases

- NCBI GenBank: <u>www.ncbi.nlm.nih.gov</u>
- EBI EMBL: <u>http://www.ebi.ac.uk/embl/</u>
- EBI UniProt: <u>http://www.uniprot.org</u>
- Organism specific databases such as EcoGene for E.
 Coli, SubtiList for B. Subtilis, et

Many of them do not contain reaction and even EC number information, make it difficult for MN reconstruction

More information on database: Nucleic Acid Research, Database issue (published in January every year)

More specific: metabolic and enzyme databases

- KEGG: <u>http://www.genome.ad.jp/kegg/</u>
- Biocyc: <u>http://biocyc.org/</u>
- Expasy: <u>http://www.expasy.ch</u>
- Brenda: <u>http://www.brenda.uni-koeln.de/</u>

Function: Link the enzyme with metabolic reactions and metabolites. KEGG is especially useful as it contains standardized reaction and compound information.

Ability required: writing program to extract information from websites (web service) or downloadable text files.

Example: KEGG Enzyme information

http://www.genome.ad.jp/dbget-bin/www_bget?enzyme+1.1.1.81

ENTRY	EC 1.1.1.81			
NAME	Hydroxypyruvate reductase			
CLASS	Oxidoreductases			
	Acting on the CH-OH group of donors			
	With NAD+ or NADP+ as acceptor			
SYSNAME	D-Glycerate:NADP+ 2-oxidoreductase			
REACTION	D-Glycerate + NAD+ or NADP+ = Hydroxypyruvate + NADH or NADPH			
PATHWAY	PATH: MAP00260 Glycine, serine and threonine metabolism			
	PATH: MAP00630 Glyoxylate and dicarboxylate metabolism			
GENES	GENES YPE: YPO2536			
	PAE: PA1499			
	RSO: RS03094(ttuD1) RS05749(ttuD2)			
	MLO: mlr5146	U		
	SME: SMa1406(ttuD3) SMb20678(ttuD2) SMc04389(ttuD1)			
	ATU: Atu3232 Atu5334	SE		

KEGG Reaction database

From downloaded text file to database

		J19		▼ =				
More than 8000 reactions		A	В	С	D	Е	F	G
Where than 0000 reactions	1	R00001		L-Methionine	C00073 + C0034	1	3.6.1.10	
	2	R00002		16 ATP + 16 I	16 C00002 + 16	1	1.18.6.1	
	3	R00004	1	Pyrophosphat	C00013 + C0000	1	3.6.1.1	
	4	R00005	1	Urea-1-carbox	C01010 + C0000	1	3.5.1.54	
ENTRY <u>R02739</u>		R00006	1	2 Pyruvate = 2	2 COO022 = COO	1	4.1.3.18	
		RUUUU/		4-Hydroxy-4-n	CU4184 = 2 CUU	1	4.1.3.17	
NAME alpha-D-Glucose 6-phosphate	6	RUUUU8	1	Parapyruvate :	006033 = 2 000	1	4.1.3.17	
latel isomerese	8	RUUUU9	1	2 H202 = 0xy	2 CUUU27 = CUU	1	1.11.1.6	
	10	R00010	-	aipna,aipna-Tr D Mongonoco		1	3.Z.T.ZO	
	11	D00011		2 Manyanese 2 GTD – Dyro	2 000034 + 2 00	1	27745	
DEFINITION alpha-D-Glucose 6-	12	R00012	1	2 GIVOXVIate a	$2 \ \text{COOM}44 = \text{COOM}2 \ \text{COOM}48 = \text{COOM}2 \ \text{COOM}48 = \text{COOM}2 \ \text{COOM}48 = \text{COOM}2 \ \text{COOM}2 \ \text{COOM}48 = \text{COOM}2 \ \text{COM}2 \ \text{COOM}2 \ \text$	1	<u>2.7.7.45</u> <u>A 1 1 A7</u>	
phosphate <=> beta-D-Glucose 6-	13	R00013	1	2-(alpha-Hvdr	COOD68 + COOO2	2	4.1.3.18	1241
	14	R00015	-	2 Sucrose = D	2 COORS = COOR	1	2.4.1.99	1.2.7.1
pnospnate	15	R00016		2 D-Glucose 1	2 C00103 = C000	1	2.7.1.41	
	16	R00017		H2O2 + 2 Fer	C00027 + 2 C00	1	1.11.1.5	
EQUATION <u>C00668</u> <=> <u>C01172</u>		R00018	1	2 Putrescine =	2 COO134 = CO63	1	2.5.1.44	
		R00019	1	2 Reduced fer	2 COO138 + 2 CO	1	1.18.99.1	
ENZYME 5.3.1.9 5.1.3.15			4				SE	
							F	
		irrev	٩r	sihility			OE	
		III C V		Olonity			N	
2							Ċ	Di

The reconstruction process

KEGG Brenda

CSD **KNEVA:** web tool for MN reconstruction

Csb.inf.ed.ac.uk/kneva

- Get a network for an organism or multiple organisms by typing the KEGG organism abbreviation
- Reconstruction based on EC and/or KO
- Network reconstruction from submitted ECs, KOs and reactions
- Subnetwork reconstruction for selected pathways.

Problems in the high throughput methods

•Incomplete and inconsistent annotation and EC assignment

- •Nonenzyme catalyzed reactions <u>link</u>
- •Unclear enzymes like 1.-.--

•Unsequensed enzymes (gene for a known enzyme not identified, more than 40 in *E. coli*) <u>link</u>

•Non organism specific enzyme-reaction relationships for unsepcific enzymes (ex, unspecific monooxygenase 1.14.14.1 and alcohol dehydrogenase 1.1.1.1)

CSD E. Coli enzyme annotation in different

databases

High quality network reconstruction

Available high quality networks

- E. coli: Ecocyc, Palsson's group (at least 3 different versions)
- Yeast: Palsson and Nielsen's group (YSBN)
- Helicobacter pylori, Haemophilus influenzae
- Bacillus subtilis, Mycobacterium tuberculosis
- Human: EHMN and Human Recon 1 (several man-years)
- www.ehmn.bioinformatics.ed.ac.uk

Comparing networks reconstructed from different groups is often difficult due to compound synonyms

What you actually get after reconstruction

A list of reactions which make up of the network (FBA analysis)

A list of metabolites in the network

Reaction-gene relationships (may link through enzymes)

You get the data, but not the picture.

Visual and mathematical representation of metabolic networks

Mathematical representation of MN

F6P	(0	1	0	0	0)
FDP	1	0	1	1	0
<i>T</i> 3 <i>P</i> 1	0	1	0	1	1
<i>T</i> 3 <i>P</i> 2	0	1	1	0	0
13 <i>PG</i>	igl(0	0	1	0	0)

Stoichiometric matrix

Connectivity matrix

CSD **Connectivity matrix to graph**

21

Currency metabolites in graph analysis

22

With or without currency metabolites

Metabolic network of S. pneumonia (616 reactions) Objective: find biologically meaningful pathways

SD Other bionetworks represented in a similar way

- Protein-protein interaction network (proteins) as nodes)
- Signal transduction network (proteins or effectors as nodes)
- Gene regulatory network (genes or proteins) as nodes)
- Other relational networks: co-expression network, disease-gene network, drug target network, etc
- All complex relationships represented as networks

Tools for network analysis

- Pajek: http://pajek.imfm.si/doku.php
- Cytoscape <u>http://www.cytoscape.org/</u> (for Biological networks, mapping data)
- Ucinet <u>http://www.analytictech.com/ucinet.htm</u>
- Bioconductor and R (SNA)
- Java and Python packages (NetworkX)
- A main issue in visualization: automatic layout (Graphviz)

Pajek, the software used for network visualization and analysis

- Written in C, very fast, many functions, 1M
- Free and updated with new function frequently
- good manual, theory introduction with how-to-do in the software

Structural analysis of large scale network

- Connection degree distribution
- Path length (efficiency)
- Node centrality (the most important nodes)
- Global connectivity of the network
- Network decomposition and hierarchical Modular organization

Neighbours and degree

Neighbours: directly linked nodes

K-neighbours: nodes linked with a node in k steps.

Degree: number of links to its neighbours for a node (may not equal to the number of neighbours).

For directed network: input and output degree.

For r2, neighbours are 2, 2-neighbours are 4

Degree is 2, input degree is 2 and output degree is 1.

Connection degree distribution

How node degrees distributed in a network.

$$P(k) = ak^{-\gamma}$$

P(k): Percentage of nodes with a degree k or not less than k (Cumulative distribution).

Power law degree distribution indicates a scale free network: A few nodes (hubs) have very high degree while most nodes have very low degree.

Random network and scale free network

Many real networks are scale free networks.

Robust on random failure but vulnerable under aimed attack

Hub metabolites

E. Coli metabolic network

Glycerate-3-phosphate, D-Ribose-5-phosphate, Acetyl-CoA, Pyruvate, D-Xylulose 5-phosphate D-Fructose 6-phosphate, 5-Phospho-D-ribose 1-diphosphate, L-Glutamate, D-Glyceraldehyde 3-phosphate, L-Aspartate, Propanoyl-CoA, Malonyl-ACP, Succinate, Acetate, Isocitrate, Fumarate

Most hubs are in central pathways. However, if currency metabolites are included in the network, Most hubs would be currency metabolites

Clustering coefficient

 Number of edges (k) between neighbors of vertex divided by total possible edges (n) between neighbors of vertex (often not consider direction)

Average clustering coefficient: average for all nodes in a network. Higher average clustering coefficient indicates small world network

Average path length

Path length: number of the steps in the shortest paths from one node to another APL: average of the path lengths for all connected pairs of nodes

Input (output) domain

The set of nodes that can reach (or can be reached) by a node.

Breadth first searching method to find the shortest paths from one node to all other nodes

Average path length in MN

Jeong et al. (2000) Nature: constant AL (about 3) for all the 43 organisms studied.

Node Centrality

Closeness centrality of node *x***:**

$$C(x) = \frac{n-1}{\sum_{y \in U, \ y \neq x} d(x, y)} = \frac{1}{\overline{d}}$$

d(x,y) the path length between node x and node y

- *U* the set of all nodes
- \overline{d} average path length between *x* and the other nodes

The central nodes have short path lengths to other nodes in the network

The most central metabolites in the metabolic network of *E. coli*

Metabolite	Mean distance
Pyruvate	4.44
Actyl-CoA	4.76
Malate	4.89
2KD6PG	4.93
Acetate	4.98
Acetaldehyde	5.03
G3P	5.06

most central nodes ≠ highly connected nodes

37

Network Centrality

Distribution of the node centrality in the network

Average path length vs. network closeness centralization index

Other centrality measures

 Betweenness centrality: the fraction of shortest paths between pairs of nodes that passes through a given node.

Network Global Connectivity

Degree distribution tells nothing about global connectivity

The right network can have short average path length though not connected at all

Strongly or weakly connected components

a **connected component** is a maximal <u>connected</u> subgraph. Two nodes are defined to be in the same connected component if there exists a <u>path</u> between them.

Strongly connected component: For any two nodes a, b in it, there is a path from a to b and a path from b to a

SC distribution in a metabolic network

Connectivity structure of MN

Bow-tie: a general structure of biological and physical networks

computational systems biology

The average path length of the GSC determines that of the whole network

Network decomposition

- Complex real networks are hierarchically organized (ex, pathways in MN).
- Identifying somehow independent subnetworks (modules) from such complex networks for biological function analysis or developing more detailed kinetic model
- There are different methods available

A Method

- Define a distance between two nodes: the shortest path between node *A* and node *B*
- Distance matrix → a hierarchical classification tree (same methods used for constructing evolutionary tree from DNA sequences)

Hierarchical decomposition of GSC

SD **Biological function of these modules**

- Aspartate metabolism, Thr, Lys synthesis 1.
- Glutathione and THF metabolism 2.
- 3. Glutamate metabolism, Arg, Pro synthesis
- galacterate, glycerate metabolism, Ser synthesis 4.
- 5. PP pathway, upper part of glycolysis pathway, sugar, aminosugar and glycerol metabolism
- TCA cycle and glyoxylate cycle, pyruvate 6. metabolism, AcCoA, AcAcCoA metabolism

Modules identified by the decomposition method have true biological meaning

The reaction connectivity map

Dots represent links

Dots distributing around diagonal indicates modularity

51

CSD

CSD **Core-periphery structure: network** organization at module level

A central core module to connect other modules with _ specific functions.

Core-periphery structure: a common organization principle of bionetworks?

Gene regulatory network

Metabolic network

Ma et al. 2004, BMC Bioinformatics

Yeast protein-protein interaction network

(Han et al. 2004, Nature Date hub and party hub)

Network analysis with NetworkX

- <u>http://networkx.lanl.gov</u>
- Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks.

import networkx as nx G=nx.XDiGraph() G.add edge(a[0],a[1])G.add node(n) G.degree() G.neighbors(n) nx.clustering(G) nx.connected component subg raphs(G) nx.closeness centrality(G) nx.all pairs shortest path leng th(G)

KNEVA for network structure analysis

Degree distribution

CSD

- Centrality analysis
- Connectivity analysi
- Network visualization
- Pathway analysis

Pajek Demo

- Input file
- Calculate degree distribution, domain, clustering coefficient, path length, centrality etc.
- Visualization, layout

