

Computational Systems Biology

Kinetic models of gene regulation

Hongwu Ma

Computational Systems Biology Group

23 February 2010

From static network to dynamic behavior

Dynamic models are needed

From Interactions to Processes

Transport

Metabolite-protein binding

DNA-protein binding

Transcription and translation

Enzyme catalyzed metabolic reaction

Protein degradation

Two component signal transduction

Kinetic models needed to describe the processes!

First step: Represent processes as reactions

Not as interactions as in the static picture of the graph analysis

- Transport: $m_{out} \rightarrow m_{in}$
- M-P binding: $m+TF \rightarrow mTF$
- Transcription: $NA \xrightarrow{mTF} mRNA$
- Translation: $AA \xrightarrow{mRNA} protein$
- Metabolic reaction: $m1 \rightarrow m2$
- Degradation: protein \rightarrow null, mRNA \rightarrow null(?)

In gene regulation process the mass balance is not important

Most important: determine the rate of these reactions? v = f(x) Which factors affect reaction rate? In which function?

Kinetic equations

Mass action kinetics

$$\nu = k * S_1 * S_2 * \dots * S_n$$

 $XS_{x} = \begin{cases} 0 \text{ if } S_{x} = 0 \\ X \text{ if } S_{x} = 1 \end{cases}$

Bz=0

CSD Start from a simple model

- +
- M-TF binding: $Sx+X \rightarrow XSx$
- Transcription: $XSx + DNA \rightarrow XSx$ +mRNA₇
- Translation: mRNA₇ \rightarrow mRNA₇+Z
- Degradation: $Z \rightarrow null$

Simplification

- M-TF binding is a switch process: •
- Transcription and Translation combined: ullet $v = B_z + \frac{v_m * XS_x^h}{K^h + XS^h}$ $XSx + DNA \rightarrow XSx + Z$
- **Degradation:**

$$v = \alpha_z Z$$

Simulation (switch on Sx=1)

- Which are the variables in the system?
- regulator X is not controlled by other TFs, therefore assume X constant: X=1
- Only one variable Z

$$\frac{dZ}{dt} = \frac{v_m * XS_x^h}{K^h + XS_x^h} - \alpha_z Z = \frac{v_m}{K^h + 1} - \alpha_z Z$$
Production Degradation
Initial concentration Z₀=0
Vm=1 K=0 1 h=2 az=1

Metabolite-TF interactions

- bind to active an activator: 20
- bind to deactive a repressor: 14
- Bind to deactive an activator: 5
- Bind to active a repressor: 11

other models

 X bind to DNA to active transcription while XSx not: X +DNA→ X +mRNAz

$$X = \begin{cases} 0 \text{ if } S_x = 1\\ X \text{ if } S_x = 0 \end{cases} \qquad \qquad v = \frac{v_m * X^h}{K^h + X^h}$$

• X bind to DNA to repress transcription while XSx not (ArsR, lac operon, inducer)

$$v = \frac{v_m K^h}{K^h + X^h}$$

• XSx bind to DNA to repress transcription (ArgR+arginine, corepressor)

$$v = \frac{v_m K^h}{K^h + X S_x^h}$$

Combinatorial regulation

AND relationship v = f(X) * f(Y)

OR relationship

-+

Mangan and Alon, (2003) PNAS, 100:11980

۲Sx

Feed forward loop

The regulator Y is also regulated by X, therefore the concentration of Y is also changed but not constant

$$\frac{dY}{dt} = \frac{v_{my} * XS_x^h}{K_{XY}^h + XS_x^h} - \alpha_y Y$$

AND

 S_v

$$\frac{dZ}{dt} = \frac{v_m * XS_x^h * YS_y^h}{\left(K_{xz}^h + XS_x^h\right)\left(K_{yz}^h + YS_y^h\right)} - \alpha_z Z$$

OR

$$\frac{dZ}{dt} = \frac{v_m \left(\left(\frac{XS_x}{Kxz} \right)^h + \left(\frac{YS_y}{Kyz} \right)^h \right)}{1 + \left(\frac{XS_x}{Kxz} \right)^h + \left(\frac{YS_y}{Kyz} \right)^h} - \alpha_z Z$$

Easily simulated with the Matlab ODE solver or in Copasi!

Other gene circuit models

Network motif and gene circuit

- Network motif: statistically highly represented substructures in a large network
- Gene circuit: A functionally independent regulatory unit involving different types of interactions
- Synthetic Biology: design and build of an artificial biological circuit with a novel function
- Experimental Design always needs guidance from computational modelling

Transport & Metabolite

Transport reactions

 $NH_3ex = NH_3in$ $AmtB + NH_4ex = AmtBNH_4$ $AmtBNH_4 = AmtBNH_3 + Hex$ $AmtBNH_3 = AmtB + NH_3in$ $NH_3in + Hin = NH_4in$

Metabolic reactions

 NH_4 in + GLU + ATP = GLN + ADP AKG +GLN + NADPH = 2 GLU + NADP NH_4 in + AKG + NADPH = GLU + NADP

Exchange reactions

GLU → protein GLN → protein GLU → AKG GLN → GLU

Reactions

Protein level regulation

PII (GInK, GInB) modification

PII+UTP → PIIUMP

 $\mathsf{PIIUMP+UTP} \rightarrow \mathsf{PIIUMP2}$

PIIUMP2+UTP → PIIUMP3

PIIUMP3 →PIIUMP2 +UMP

PIIUMP2 → PIIUMP +UMP

PIIUMP → PII +UMP

GS modification

 $GS+ATP \rightarrow GSAMP$

 $\mathsf{GSAMP} \rightarrow \mathsf{GS} + \mathsf{ADP}$

AmtB binding

AmtB+GInK = AmtBGInK

Gene level regulation

NtrC phosphorylation NtrBP+NtrC=NtrCP+NtrB; PII

GS regulation

→GS; NtrCP

 $GS \rightarrow$

 $\mathsf{GSAMP} \rightarrow$

AmtB, GlnK regulation

→AmtB; NtrCP

→GInK; NtrCP

AmtB \rightarrow

 $GlnK \rightarrow$

AmtBGInK →

AmtBNH3 →

AmtBNH4 →

 $GInKUMP(1-3) \rightarrow$

Gene regulation

NtrBC two component system: dual regulator. GS gene regulation through two promoters

Weak glnAp1 is rpoD dependent while strong glnAp2 is rpoN dependent

GS gene regulation

GS production: -> GS; NtrCP

Promoter 1 is weak (low vp1), repressed by NtrCP Promoter 2 is strong (high vp1), activated by NtrCP

Steady state GS concentration change around six times, 25 uM at very low NH4ex

Model analysis

- Steady state fluxes and concentrations at various NH4/NH3 concentrations and various pHs (fit experimental data)
- Cellular dynamic responses to suddenly changed environment
- Effect of gene knock out
- Parameter sensitivity analysis and contribution from different regulation mechanisms (like MCA for metabolic pathway model)

Dynamic simulation: 5 to 500 μM

Gene regulation takes a very long time, but in consistence with the protein half life at about 1 hour.

Protein level regulation is much fast! Active protein reduced quickly.

Dynamic simulation: 500 to 5 μ M

Slow gene regulation response leads to very low GLN concentration (less than 0.01mM), very low N assimilation rate (0.01mM/s) and negative GDH flux (nearly 50s).

May use a FFL to speed up the response

Softwares for modelling

- Copasi: <u>www.copasi.org</u>, very good software for kinetic model analysis but not for visualization
- Jdesigner/Jarnec: sys-bio.org, diagram+simulation
- CellDesigner: automatic layout+simulation
- Simbiology: by mathworks, powerful and expensive, only tool to deal with the currency metabolites in visualization

Alves, et al: Tools for kinetic modeling of biochemical networks, Nature Biotechnology, v24:667, 2006

Desired features

- SBML import and export
- Built-in kinetic laws to select and user-defined kinetic laws for easy reuse
- Give the parameter values and initial concentrations of variables (species such as ATP can be set at constant)
- Run the simulation and see the results in graph or data

Databases on models

- Biomodels database <u>http://www.ebi.ac.uk/biomodels/</u>
- over 200 Curated models from literature on metabolic pathways, gene regulatory circuits and signal transduction pathways
- SBML files can be directly imported by many software for simulation (<u>http://sbml.org</u>)
- · Graph visualization for easy checking

Other model Databases

- Kitano Model repository (<u>http://www.systems-biology.org/001/</u>): KEGG pathway models
- CellML repository: more than 100 models from literature but not curated, some may not have parameter values. CellML is not supported by many software

