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The answer basically 1s ‘yes’

Thus, the mterconnections of biological
components--the ‘blueprint,” the
‘circuit diagrams’--of cells are taking
center stage 1n biology:

and thus... we have the emergence of
systems biology




What is Systems Biology?

is an academic field that seeks to
integrate biological data as an
attempt to understand how
biological systems function.

By studying the relationships and
interactions between various parts
of a biological objects it is hoped
that an understandable model of
the whole system can be
developed

Wikipedia
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Henrik Kacser.
Systems Biology. Described in 1957

e “The properties of a system are in fact more
than (or different from) the sum of the
properties of its components, a fact often
overlooked in zealous attempts to
demonstrate additivity of certain
phenomena. It is with these systemic
properties that we shall be mainly
concerned”

e “There are no concepts in chemistry or
physics equivalent to genes\ regulation\
epigenesis precisely because these are
properties only possible in systems of
greater complexity than have been
subjected to detailed analysis by those
sciences”

KACSER H 1957 Some physicochemical aspect of biological organisation Appendix to The Strategy of the
Genes, (Waddington CH, ed), pp 191-249. London: George Allen and Unwin
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Henrik Kacser. The founder of Metabolic Control Analysis

The expectation that a metabolic pathway will be controlled by a single
pacemaker reaction is a fallacy,

Most of the experimental criteria used in the supposed identification of
such steps are misleading. Instead, varying amounts of control can be
distributed over the enzymes of the pathway, but this is a property of the

metabolic system as a whole and cannot be predicted from the
characteristics of the enzymes in isolation.

e

KACSER, H. & BURNS, J. A. (1973) The control of flux. Symp. Soc. Exp. Biol.27, 65-104.
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Enzymes

e Most enzymes are proteins, and their activities depends on the 3D structure of the
amino acids that compose them
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Static Models. The Inventory

Only connectivity (topology) of the interactions My
Visualised as connection or interaction graph b} 1A
Types

—  Metabolic (Metabolomics, metabonomics)
—  Genetic Regulation (Microarrays)

—  Protein-Protein Interactions (Proteomics)
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Metabolic Networks

Nutrient catabolism
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Network motifs
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Network motifs found in the E.Coli transcriptional regulation network.
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Constraint-based Analysis

How often have I said to vou that
when you have eliminated the
impossible, whatever remains,

however improbable, must be the

truth?

—Sherlock Holmes, A Study in

Constraints
Uﬂbﬂ}l“d'ﬂd (1) Stoichiometric
Solution Space (11) Thermodynamic

(1) Capacity

ot

Systems Biology Research Group

University of California, San Diego
http://systemsbiology.ucsd.edu

Department of Bioengineering
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Methods in systems biology

Abstracted Specified
High-lewel models (L1) Low-level models (L2)
N B |
Statistical mining
Bayesan networks
F
Boolean modeis
F |
Markov chains
'
Differential equations
4
1
i
1
]
|
Componants Influences and Mechanisms (Including
and connections information flow structure)

A diverse spectrum of high-to-low modeling approaches (Ideker and Lauffenburger, 2003).
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Methods in systems biology
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Quantitative Kinetic Models. The TIME

I Receptor

Kinetic M-cl)-del

R+L & R-L
R+l & Rl

Static model

Kinetic models - time dependency
incorporated

— Kinetic behaviour (rate laws) added
to static model

Kinetic constants by fitting to
experimental data

Mathematical model

— Time variation of all concentrations
and fluxes can be simulated

— Model analyses possible:
sensitivity, linear stability,
bifurcation, and asymptotic analysis

Mathematical Model Numerical Simulation

[R] = —R[RIL]+ G[RLI-K[RII1+ kg RIT | sy o

[RL] = K[RIL]-kRL] L. 7/

[RI] = ky[RII]-ky[RI] Sy

(L] = —k[RIL]+kIRL] 211

U] = —kg[RII]+ kylRI) g, 0

Ly = [L]+[RL] 5

IO = [I] + [RI] % 0 2,000 4,000 6,000 8,000 10,000
Ry = [R]+[RL]+[RI] & Time

Bioinformatics, 1999, Vol 15, 749-758,



Multilevel control of

enzyme activity
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protein and
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Main stages of kinetic model development

( Stoichiometry of metabolic pathway and elucidation of the key

enzymatic and genetic regulations: Kinetic scheme and N - matrix
of stoichiometric coefficients

System of differential equations describing dynamics of the
pathway:

dx/dt=N-v(x;e,K)
Here, x=[x,,...X.] is vector of metabolite concentrations and
v=[v,,...v] is vector of rate laws

Description of individual enzymes:
- catalytic cycle;
- derivation of the rate laws for enzymatic reactions;

- estimation of kinetic parameters of enzymatic reactions from in
vitro data, available from literature

Introduction of gene regulation

\O\Validation of the whole model using in vivo data

~

4
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Model Analysis. Dynamics
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Glycolytic Oscillations

100 uM acetaldehyde

I

3mM KCN -
20 mM glucose 5 minutes

Relative NAD(P)H fluorescence

Richard et al. (1996), Eur. J. Biochem. 235, 238-241.
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Bifurcation-Analysis:
overview about possible modes of dynamical behaviour
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Chaotic kinetic models

Another famous chaotic attractor is due to Otto Rossler{2l, who set out to find the simplest
set of differential equations capable of generating chaotic motion. The chaos (Fig.6) is
the so-called "spiral" variety. Rossler's equations can be viewed as a metaphor for
chemical chaos, in which regard, it is worth noting that dynamics of the Rossler variety
were subsequently discovered® experimentally in the Belousov-Zhabotinsky and

Peroxidase-Oxidase reactions. These chemical oscillators, defying as they do, the old

conventional wisdom that all reactions ultimately go to equilibrium, have attracted

enormous interest both from the vantage of theory and experiment.




Chaotic kinetic models

The Mackey-Glass equation models dynamics of white blood cell production in the human
body.('%9 Because rates of stem cell proliferation entail a time delay, periodic dynamics and
chaos can obtain. Indeed, Mackey and Glass have suggested that long-term fluctuations in
cell counts observed in certain forms of leukemia are evidence for these behaviors in vivo

Real life is balancing on the edge and could be unpredictable. At the moment, our goal is to
make a predictable model, that could be used in pharmaceutical application, to avoid
complexity and to work in the range of parameters that produce predictable and re-
producible results.




The Modelling Process

e Defining the biological scope for the model
e Creating the model
—  Static model development
» Entities and Interactions between them

»  Data acquisition, mining, curation, and |t &
storage - e ) =Y
— Quantative kinetic model development v B o, T

» Collection data on time dependencies
» Fitting data to find kinetic parameters
e Model validation
— Examining if model makes ‘plausible’
predictions
e Simulation, visualisation, analysis, and
interpretations
— Examine results looking for new biology
e Planning of future experiments
— To enhance model and verify predictions
— To replace some in vivo and in vitro
experiments
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The EGFR signalling network
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ErbB pathway becomes hyper-activated in many different cancer cell
lines by a range of mechanisms ( overproduction of ligands,
overproduction or constitutive activation of receptors).

Y. Yarden & M.X. Sliwkowski (2001), Nature Reviews Mol. Cell Biol. 2, 127.
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The Edinburgh Pathway Editor (EPE)
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® Visual annotation of Bfcots

— metabolic, genetic regulatory, signal transduction and
other intracellular networks.

— multicellular, tissue and organism level networks for
disease knowledge reconstruction.

® Consistent and flexible way of data storage
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(Cantley, L C., Auger, IR, Carpenter, C., Duckwarth, B, Graziani,
Je. Kapeller, R., and Soltofi, 5. (1991 Oneogenes and signal
bransduction [published erratum sppears in Cell 1991 May 31,656}
Foliowing 914] Cell 54:281-302.

Jauger, KR . Serunian, LA, Soltoff, 5P, Libby, P., and Cantley, L
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167-75,
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Systems Biology Informatics Infrastructure (SBII)
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Use of Systems Biology

Arthur C Clarke’s Third Law:

“Any sufficiently advanced technology is
indistinguishable from magic”

Is Systems Biology/Modelling:
 an “Esoteric Knowledge”?
* the way to understand biological systems?

* a tool to solve practical problems?
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Future for Systems Biology

Rational therapy design

Medical Informatics Integration of Data

Rational Toxicology and
Safety Assessment

Pre-Clinical/Clinical

ADMET/QSAR
Rational BioMarker Design
PK/PD
Rational Assay Design
HTP “omics” / o
physiological Rational Target Design
data,

Rational organism design

Bio processing data : _
simulation : .
Rational process design
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