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What  is Systems Biology?
Henrik Kacser and Systems Biology
Modelling 
Enzyme kinetics
Metabolic control analysis. 
Constrained based optimization
Metabolic Example
Signal transduction Example
Pathway Editor
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What is Systems Biology?What is Systems Biology?

is an academic field that seeks to 
integrate biological data as an 

attempt to understand how 
biological systems function. 

By studying the relationships and 
interactions between various parts 
of a biological objects it is hoped 
that an understandable model of 

the whole system can be 
developed

Wikipedia
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HenrikHenrik KacserKacser. . 
Systems Biology. Described in 1957Systems Biology. Described in 1957

“The properties of a system are in fact more 
than (or different from) the sum of the 
properties of its components, a fact often 
overlooked in zealous attempts to 
demonstrate additivity of certain 
phenomena. It is with these systemic 
properties that we shall be mainly 
concerned”
“There are no concepts in chemistry or 
physics equivalent to genes\ regulation\
epigenesis precisely because these are 
properties only possible in systems of 
greater complexity than have been 
subjected to detailed analysis by those 
sciences”

KACSER H 1957 Some physicochemical aspect of biological organisation Appendix to The Strategy of the 
Genes, (Waddington CH, ed), pp 191-249. London: George Allen and Unwin
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HenrikHenrik KacserKacser. The founder of Metabolic Control Analysis. The founder of Metabolic Control Analysis

The expectation that a metabolic pathway will be controlled by a single 
pacemaker reaction is a fallacy, 

Most of the experimental criteria used in the supposed identification of 
such steps are misleading.  Instead, varying amounts of control can be 
distributed over the enzymes of the pathway, but this is a property of the 
metabolic system as a whole  and cannot be predicted from the 
characteristics of the enzymes in isolation. 

KACSER, H. & BURNS, J. A. (1973) The control of flux. Symp. Soc. Exp. Biol.27, 65-104.

X



Edinburgh January, 10

Metabolic modeling of microbial strains in silico
Markus W. Covert , et al , 2001
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EnzymesEnzymes

Most enzymes are proteins, and their activities depends on the 3D structure of the 
amino acids that compose them 
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Only connectivity (topology) of the interactions
Visualised as connection or interaction graph
Types
– Metabolic (Metabolomics, metabonomics)
– Genetic Regulation (Microarrays)
– Protein-Protein Interactions (Proteomics)

Static Models. The InventoryStatic Models. The Inventory
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Metabolic Metabolic NetworksNetworks

CseteCsete & Doyle& Doyle 2004. Trends 2004. Trends BiotechnolBiotechnol. 22: 446. 22: 446

Bow tie Bow tie 
structurestructure

Nutrient catabolismNutrient catabolism
•• linearlinear
•• convergentconvergent
•• few few 
connectionsconnections

Macromolecule biosynthesisMacromolecule biosynthesis

proteinprotein
RNARNA membranesmembranes

wallswalls

•• cyclescycles
•• many many 
connectionsconnections

•• redundantredundant

CentralCentral
(core)(core)

MetabolismMetabolism
~ 100 reactions~ 100 reactionsprecursorsprecursors

cofactorscofactors

•• linearlinear
•• divergentdivergent
•• few few 
connectionsconnections

common common 
intermediatesintermediates
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Network motifsNetwork motifs

Network motifs found in the E.Coli transcriptional regulation network.



Edinburgh January, 10

ConstraintsConstraints
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Adaptive EvolutionAdaptive Evolution
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Methods in systems biologyMethods in systems biology

A diverse spectrum of high-to-low modeling approaches (Ideker and Lauffenburger, 2003).
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Methods in systems biologyMethods in systems biology
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Quantitative Kinetic Models. The  TIMEQuantitative Kinetic Models. The  TIME
Kinetic models - time dependency 
incorporated
– Kinetic behaviour (rate laws) added 

to static model
Kinetic constants by fitting to 
experimental data
Mathematical model
– Time variation of all concentrations 

and fluxes can be simulated
– Model analyses possible: 

sensitivity, linear stability, 
bifurcation, and asymptotic analysis

Receptor
InhibitoInhibitoInhibitoInhibitor

Ligand

Static modelStatic modelStatic modelStatic model

Numerical SimulationNumerical SimulationNumerical SimulationNumerical Simulation

Kinetic ModelKinetic ModelKinetic ModelKinetic Model
R + L ⇔ R⋅ L
R + I ⇔ R⋅ I

R[ ]′ = −k1 R[ ] L[ ]+ k2 RL[ ]− k3 R[ ] I[ ]+ k4 RI[ ]
RL[ ]′ = k1 R[ ] L[ ]−k2 RL[ ]
RI[ ]′ = k3 R[ ] I[ ]− k4 RI[ ]
L[ ]′ = −k1 R[ ] L[ ]+ k2 RL[ ]
I[ ]′ = −k3 R[ ] I[ ]+ k4 RI[ ]
L0 = L[ ]+ RL[ ]
I0 = I[ ]+ RI[ ]
R0 = R[ ]+ RL[ ]+ RI[ ]

Mathematical ModelMathematical ModelMathematical ModelMathematical Model

Bioinformatics, 1999, Vol 15, 749-758,
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Multilevel control of 
enzyme activity

Metabolic 
regulation

Genetic 
regulation

KM of the metabolic, 
protein and 
genetic networks
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Main stages of kinetic model developmentMain stages of kinetic model development

Stoichiometry of metabolic pathway and elucidation of the key 
enzymatic and genetic regulations: Kinetic scheme and N - matrix 
of stoichiometric coefficients
System of differential equations describing dynamics of the 
pathway: 
dx/dt=N·v(x;e,K)                                                               
Here, x=[x1,…xm] is vector of metabolite concentrations and 
v=[v1,…vn] is vector of rate laws
Description of individual enzymes: 
- catalytic cycle;
- derivation of the rate laws for enzymatic reactions; 
- estimation of kinetic parameters of enzymatic reactions from in
vitro data, available from literature
Introduction of gene regulation
Validation of the whole model using in vivo data
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Model Analysis. DynamicsModel Analysis. Dynamics
•Steady State

•Damped oscillations

•Triggers

Switches

Oscillation

Coupled Oscillations

Chaos

???
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Glycolytic Oscillations

Richard et al. (1996), Eur. J. Biochem. 235, 238-241.
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Bifurcation-Analysis: 
overview about possible modes of dynamical behaviour
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Chaotic kinetic modelsChaotic kinetic models
Another famous chaotic attractor is due to Otto Rössler(2), who set out to find the simplest 

set of differential equations capable of generating chaotic motion. The chaos (Fig.6) is 
the so-called "spiral" variety. Rössler's equations can be viewed as a metaphor for 
chemical chaos, in which regard, it is worth noting that dynamics of the Rössler variety 
were subsequently discovered(9) experimentally in the Belousov-Zhabotinsky and 
Peroxidase-Oxidase reactions. These chemical oscillators, defying as they do, the old 
conventional wisdom that all reactions ultimately go to equilibrium, have attracted 
enormous interest both from the vantage of theory and experiment. 
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Chaotic kinetic modelsChaotic kinetic models
The Mackey-Glass equation models dynamics of white blood cell production in the human 
body.(10) Because rates of stem cell proliferation entail a time delay, periodic dynamics and 
chaos can obtain. Indeed, Mackey and Glass have suggested that long-term fluctuations in 
cell counts observed in certain forms of leukemia are evidence for these behaviors in vivo
Real life is balancing on the edge and could be unpredictable. At the moment, our goal is to 
make a predictable model, that could be used in pharmaceutical application, to avoid 
complexity and to work in the range of parameters that produce predictable and re-
producible results.
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The Modelling ProcessThe Modelling Process
Defining the biological scope for the model
Creating the model
– Static model development

» Entities and Interactions between them
» Data acquisition, mining, curation, and 

storage 
– Quantative kinetic model development 

» Collection data on time dependencies
» Fitting data  to find kinetic parameters

Model validation
– Examining  if model makes ‘plausible’

predictions
Simulation, visualisation, analysis, and 
interpretations
– Examine results looking for new biology
Planning of future experiments
– To enhance model and verify predictions
– To replace some in vivo and in vitro

experiments
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Y. Yarden & M.X. Sliwkowski (2001), Nature Reviews Mol. Cell Biol. 2, 127.

The EGFR signalling network 

ErbB pathway becomes hyper-activated in many different cancer cell 
lines by a range of mechanisms ( overproduction of ligands, 
overproduction or constitutive activation of receptors).
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Editable MapsEditable Maps
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The Edinburgh Pathway Editor (EPE)The Edinburgh Pathway Editor (EPE)
Visual annotation of 

– metabolic, genetic regulatory, signal transduction and 
other intracellular networks.

– multicellular, tissue and organism level networks for 
disease knowledge reconstruction.

Consistent and flexible way of data storage
» kinetic information if available
» reference, data quality and data confidence
» checking biological names against thesaurus 

and nomenclatures
» arbitrary additional user-defined object’s properties

– easy data exchange
» pathways stored locally in object oriented format (XML)
» pathways stored in relational database for enterprise sharing 
» SemanticWeb (RDF, OWL)
» export to different picture formats, including WEB compatible HTML 

maps
» export/import data from/to variety of sources (SBML)
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Systems Biology Informatics Infrastructure (SBII)
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Use of Systems BiologyUse of Systems Biology

Arthur C Clarke’s Third Law:
“Any sufficiently advanced technology is 
indistinguishable from magic”

Is Systems Biology/Modelling:
• an “Esoteric Knowledge”?

• the way to understand biological systems?

• a tool to solve  practical problems?
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Future for Systems BiologyFuture for Systems Biology

Rational Toxicology and 
Safety Assessment

HTP “omics”
physiological 
data, 

Rational Target Design

Medical Informatics

Pre-Clinical/Clinical 

ADMET/QSAR

PK/PD
Rational Assay Design

Bio processing data
Rational process design

Rational organism design

Rational therapy design

Rational BioMarker Design

Integration of Data

Analysis of 
data

Modelling 
and 

simulation
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