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Lecture 14;

Mathematical representation of biological processes:
Dynamic signalling
and

Gene Expression Regulation

Images and text from: Tyson JJ - Sniffers, buzzers, toggles and blinkers.
Curr Opin Cell Biol. 2003 Apr;15(2):221-31.
1 E. Klipp, Systems Biology in Practice, Wiley-VCH, 2005 — Chapter 8



PART 1

Modelling of molecular networks:
Simple modules for building complex dynamic networks

* Linear and hyperbolic Signal response curves
« Sigmoidal (BUZZER)

« Perfectly adapted (SNIFFER)

« Positive feedback

— Mutual activation (ONE WAY SWITCH)
— Mutual inhibition (TOGGLE SWITCH)

* Negative feedback

— homeostasis
— oscillations (BLINKER)




Introduction:
molecular networks vs. circuit design

* A molecular network looks strikingly similar to the wiring
diagram of a modern electronic gadget. Instead of resistors,
capacitors and transistors hooked together by wires, one sees
genes, proteins and metabolites hooked together by chemical
reactions and intermolecular interactions.

« Complex molecular networks, like electrical circuits, seem to be
constructed from simpler modules: sets of interacting genes and
proteins that carry out specific tasks and can be hooked
together by standard linkages.

« Simple signalling pathways can be embedded in networks using
positive and negative feedback to generate more complex
behaviours — toggle switches and oscillators — which are the
basic building blocks of the exotic, dynamic behaviour shown by
nonlinear control systems.



Linear signal-response curve (1)

A simple example of protein
dynamics: protein synthesis
and degradation

S

|

|
Using the law of mass )
action, we can write the rate — FER—*
equation
S = signal strength (e.g.
concentration of mMRNA)

R = response magnitude d_R B
(e.g. concentration of T ko+kiS +k2R

protein)

(a)
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Linear (2)

» A steady-state solution of a R — kO +k1S
differential equation, dR/dt = f(R), is § I
a constant, Rss, that satisfies the 2
algebraic equation f(R)=0.

* In most cases, such simple _
components are embedded in more - Linear

complex pathways, to generate = 05
signal-response curves of more ©
adaptive value. =

(R

i

L
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« Diagram representing the strength of
the signal response in as function of d
the signal strength
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Hyperbolic signal-response curve (1)

* Another simple example of protein (b) g

dynamics: protein phosphorylation ATP V' app
I

and de-phosphorylation )‘1‘1‘

 RP = the phosphorylated form of the i ol

response element (which we ‘7_‘<

suppose to be the active form) P H,O

 Rp =[RP], and Ry =R + Rp = total
concentration of the response

element. d_R —ko+kiS +kR

dt



R

Hyperbolic (2)

« A steady-state solution , for Rp o — RS
fIR)=0. (k2K + S
11 Hyperbolic

* |n most cases, such simple
components are integrated In
more complex pathways, for
example to generate signal-
response curves of more
adaptive value. i

Response (Rp)
—
LT

Signal (5)



Integration of simple modules
to obtain adaptation

(a) Specificity

Signal molecule fits

binding site on its -~
complementary receptor; Receptor
other signals do not fit.

(b) Amplification Effect
When enzymes activate

enzymes, the number of Signal

affected molecules

increases geometrically

in an enzyme cascade.

(c) Desensitization/Adaptation
Receptor activation triggers

Signal

@®

a feedback circuit that shuts
off the receptor or removes

it from the cell surface.

Enzyme

- Response
(d) Integration
When two signals have
opposite effects on a : .
metabolic characteristic Slgrial L S:grlal o
such as the concentration @
of a second messenger X,
or the membrane potential |Receptor|Recepto
V., the regulatory outcome 1 e
results from the integrated |
input from both receptors. \T[X] orTV,, l[X]orl Vm)

Y
Net A[X]or V,,
Response

From: D. L. Nelson, Lehninger Principles of Biochemistry, IV Edition —

Chapter 12 Biosignaling
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Sigmoidal signal-response curve (1)

 The sigmoidal case (c) is a () - T o
modification of case (b), where the :
phosphorylation and de- : ¥
phosphorylation reactions are v7_,<
governed by Michaelis-Menten L o
Kinetics. |

* The steady-state solution of the

quadratic equation is the Goldbeter- N slgmoidal

Koshland function.

 The sigmoid shape represents a

switch (for a small difference in signal the
response at a certain threshold switches:
from null to high, from off to on, from 0 to 1)

Response (R
O
n

9 Signal (5)



10

Sigmoidal signal-response curve (2): B“"!R

The Goldbeter—Koshland function, although switch- S
like, shares with linear and hyperbolic curves the
properties of being graded and reversible.

Graded = the response increases continuously with
signal strength. A slightly stronger signal gives a of
slightly stronger response. Signal (S)

Response (Kp)
]
() ]

Reversible = if the signal strength is changed from Sipitial 10 Sfinal, the
response at Ssinal IS the same whether the signal is being increased
(Sinitial < Sfina1) Or decreased (Sinitial > Sfinal)

Although continuous and reversible, a sigmoidal response is abrupt. Like
a buzzer or a laser pointer, to activate the response one must push hard
enough on the button, and to sustain the response one must keep
pushing.

When one lets up on the button, the response switches off at precisely
the same signal strength at which it switched on.
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Perfect adaptation: SNIFFER

* By supplementing the simple linear response

element (Figure a) with a second signalling (d)
pathway (through species X), we obtain x
perfect adaptation to the signal. S ¢ ;
S
« Perfect adaptation: although the signalling i, v
pathway exhibits a transient response to — rR—r

changes in signal strength, its steady-state
response Rss is independent of S.

1.91

* This is typical of chemotactic systems, which
respond to an abrupt change in attractants or
repellents, but then adapt to a constant level
of the signal.

« Our own sense of smell operates this way, so
we refer to this type of response as a
‘sniffer.’ 0.9

141
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Positive feedback: switches

* In Figure d the signal influenced the response
via two parallel pathways that push the
response in opposite directions (an example
of feed-forward control).

« Alternatively, some component of a response
pathway may feed back on the signal.
Feedback can be positive, negative or mixed.

* There are two types of positive feedback:

* In Figure e, R activates protein E (by
phosphorylation), and EP enhances the
synthesis of R.

* In Figure f, R inhibits E, and E promotes the
degradation of R; hence, R and E are
mutually antagonistic.

12

(e)

(f)

mutual activation

mutual inhibition




R stems biology
Irreversible switch: ON! WAY SW|TC“

 In either case (mutual activation or antagonism), (e) | Mutual activation
positive feedback may create a discontinuous . ;
switch, meaning that the cellular response Ll /
changes abruptly and irreversibly as signal a1
magnitude crosses a critical value. & S

% cit

* In Figure e, as signal strength (S) increases, the S
response is low until S exceeds some critical 0l
intensity, S¢rit, at which point the response 0 | 10
increases abruptly to a high value. Signal (S)

 Then, if S decreases, the response stays high (i.e. the switch is irreversible;
unlike a sigmoidal response, which is reversible).

*  Notice that, for S values between 0 and S, the control system is ‘bistable’ — that is, it has two
stable steady-state response values (on the upper and lower branches — the solid lines) separated
by an unstable steady state (on the intermediate branch — the dashed line).

13



BRI Vsters biology
Reversible switch: TOGGLE SWITCH

« Inthe toqgle switch, if S is decreased 1) T VAT —
enough, the switch will go back to the off-

state, as in Figure f. 3
g 0.3 St
* Forintermediate stimulus strengths 8 b
Serit1 < S < Serit2 ] TRRROR
the response of the system can be either D"/
small or large, depending on how S was a1 9
changed. Signal (S)

» This sort of two-way, discontinuous switch is often referred to as
hysteresis.

« Examples include: the lac operon in bacteria, the activation of M-phase-promoting factor
(MPF) in frog egg extracts, and the autocatalytic conversion of nhormal prion protein to its
pathogenic form.

«  While one-way switches play roles in processes characterized by a point-of-no-return,
" like frog oocyte maturation in response to progesterone or apoptosis (regulated cell
death).
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Some Math:

bifurcations

« The signal-response curves in F/gure e and f would be called ‘one-
parameter bifurcation diagrams’ by an applied mathematician.

» The parameter is signal strength (manipulable by the experimenter).
The steady-state response, on the Y axis, is an indicator of the
behaviour of the control system as a function of the signal.

« At S¢it, the behaviour of the control system changes abruptly and
irreversibly from low response to high response (or vice versa).

» Such points of qualitative change in the behaviour of a nonlinear
control system are called bifurcation points, in this case, a ‘saddle-
node bifurcation point’,

o Other, more esoteric bifurcation points, are associated with more
complex signal-response relationships.

15
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Negative feedback: homeostasis
(9)

* In negative feedback, the response 5,
counteracts the effect of the stimulus. l
Y > R * >
* In Figure g, the response element, R, inhibits : |
the enzyme catalysing its synthesis ! |
E qL—"‘ EP

* The steady state concentration of R is
confined to a narrow window for a broad
range of signal strengths, because the supply
of R adjusts to its demand.

Homeostatic

« This type of regulation, commonly employed
in biosynthetic pathways, is called
homeostasis.

» (Itis a kind of imperfect adaptation, but it is not a

sniffer because stepwise increases in S do not
generate transient changes in R.)

Response (R)
|
J

16 Signal (S)
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Negative feedback: BLINKER

» Negative feedback can also create an oscillatory (a) g
response. A two-component, negative feedback :
loop, X—R—|X, can exhibit damped oscillations to v
a stable steady state but not sustained -
oscillations .

» Sustained oscillations require at least three
components: X—Y—R—|X. The third component e ’i1)
(Y) introduces a time delay in the feedback loop,
causing the control system repeatedly to overshoot
and undershoot its steady state

* Negative feedback has been proposed as a basis
for oscillations in protein synthesis, MAPK
signalling pathways, and circadian rhythms

« Elowitz and Leibler designed an artificial genetic network
consisting of three operons that repress one another in a
loop. Individual bacteria containing these plasmids
showed periodic expression of a fluorescent reporter
protein, qualifying this case as a literal ‘blinker’.

17
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PART 2
Modelling molecular networks:

Gene expression regulation
Modelled with:

* Ordinary differential equations
* Directed and undirected graphs
« Bayesian networks

« Boolean networks

8 18)deyd — G002 ‘HON-A8lM ‘eanoeid ul

Abojoig swajsAS ‘ddijy "3 :wouy )3x8) pue sebew|

« and (not covered here): stochastic equations, partial differential
equations, rule-based formalisms and many others...
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One example, many approaches (1)

* A network of interactions among DNA, RNA, proteins, and other
molecules realises the regulation of gene expression.

* There is forward flow of information from gene to mRNA to protein
according to the dogma of molecular biology.

* Moreover, positive and negative feedback loops and information
exchange with signalling pathways and energy metabolism ensure
the appropriate regulation of the expression according to the
actual state of the cell and its environment

* Modelling of gene expression is an example of a scientific field
where one may obtain results with different techniques.

19
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One example, many approaches (2)
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« The example presented here contains four genes, a through d, which code for the proteins A
through D.

«  mRNA is not shown for sake of simplicity.
« The proteins A and B may form a heterodimer that activates the expression of gene c.
« Protein C inhibits the expression of genes band d, which are in this way co-regulated.

+ Protein D is necessary for the transcription of protein B.
20
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Description with: Qrdinary Differential Equations (1)

* Gene expression can be mathematically described with systems
of ordinary differential equations in the same way as metabolism
(Chapter 5) or signalling (Chapter 6)

* In general, one considers:
dx
— = fi(x,....xn) 1=1...7
dt

 The variables x;represent the concentrations of mMRNAs,
proteins, or other molecules. The functions f; comprise the rate
equations that express the changes of x; due to transcription,
translation, or other individual processes.

21
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Description with: Qrdinary Differential Equations (2)

L

The dynamics of the system depicted in Fig. 8.2 can be described in several wWays
depending on the desired particularization. If we consider only the mRNA abun-
dances a, b, ¢, and d, we get:

da . & If we also consider the depicted
5= fi (@) fa@)=v,—k,-a regulatory interactions

%“?" =fub.c.d)  folb,c.d)= {FK;:;’_:%T;:ETT ~ky-b

j{; =fla.b.c)  fi(a b )= -j‘;ﬁ%%r_ — k¢

% = fy(c. d). file.d) = E}:K,j? — by (8-3)

Here, ka, kb, kc, and kd are the first-order rate constants
of the degradation of a, b, ¢, and d, respectively.




Description with: Qrdinary Differential Equations (3)

 The ODE formalism allows involving more details, e.g. we can
distinguish between the processes determining the velocity of
translation (basic rate Vy, and inhibition by protein C), transcription
(dependence on mRNA concentration b and on the activator
concentration D), and degradation or consumption on both levels
(degradation of band B and formation of complex AB).

 The advantage: ODE systems take into account detailed
knowledge about gene regulatory mechanisms such as individual
kinetics, individual interactions of proteins with proteins or proteins
with mRNA.

 The disadvantage: the current lack of exactly this type of
knowledge - the lack of kinetic constants due to measurement
difficulties and uncertainties in the function of many proteins and
23 their interactions.
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Fig. 8.3 Dynamics of the mRNA concenira-
tions of the system presented in Example 8-1
according to Eq. (8-4). Parameters: v, = 1,
ki=1,V,=1,K,=5,K.=05 n.=4, kb =0.1,
V.=1,K.=5 k. =01,V;=1, kg= 1. Initial

o canditions: a (0) = b (0) =¢(0) =d (C) = 0.
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Description with:

Directed and Undirected graphs (1)

» A directed graph G is a tuple <V, E>,

where V denotes a set of vertices Directed graphs
and E a set of edges. {Hﬁﬁ"h
"as b

* The vertices ieV correspond to the Vs /e
genes (or other components of the L Y, ;/ T
system) and the edges correspond : gf
to their regulatory interactions. C—>I(

* In a general way, one may express V={ahc d)

an edge as a tuple <i,j, properties>. |
E={(aa+)(ac+)bc+),
* Properties can indicate whether | (C.B .-:I,[E,Ei,-_},lid,tl,+)}
activates (+) or inhibits (-) /.
25
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Description with:

Directed and Undirected graphs (2)

 Many databases are organized as richly annotated
directed graphs (e.g., Transfac and KEGG).

» Directed graphs cannot represent the dynamics of a
network, but they allow certain predictions about
network properties:

— Tracing paths between genes yields the sequence of regulatory
events, shows redundancy in the regulation, or indicates
missing regulatory interactions.

— A cycle in the network may indicate feedback regulation.

— Comparison of gene regulatory networks of different organisms
may reveal evolutionary relations and reveal targets for
pharmaceutical applications .

— The network complexity can be measured by the connectivity

26
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Description with: Bayesian networks (1)

« A Bayesian network is based on the representation of the regulatory
network as a directed acyclic graph G = <V, E>, where the vertices i
V represent genes and edges denote regulatory interactions.

« Variables x; belonging to the vertices i denote a property relevant to the
regulation, e. g., the expression level of a gene or the amount of active
protein.

« A conditional probability distribution p(x;|L(x;)) is defined for each x;,
where L(x;) are the parent variables be the direct regulators of i.

 The directed graph G and the conditional distribution together specify a
joint probability distribution p(x) that determines the Bayesian network.
The joint probability distribution can be decomposed into:

p(x) =[] pC] L(x)

27
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Description with:

Note:

some interactions are
neglected:

- inhibition of b by c,

- activation of b by d

in order to get a network
without cycles.

Bayesian network (2)

T P
/
- o

P )

PG
ﬂ[xﬁl;{ﬂl‘}:hjl
X150,

b

o
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Description with: Bayesian networks (3)

» The directed graph expresses dependencies of probabilities: the
expression level of a gene represented by a child vertex depends on
the expression levels of genes belonging to the parent vertices.

« It also implies conditional independence i (x;; y | z), meaning that x; is
independent of the set of variables y given the set of variables z.

For the network given in Fig. 8.2¢ the conditional independence relations are
i (x,:x) and i (x4 Xa. %]%:). The joint probability distribution of the network is
p {x{'ﬁ* Xh. xt" xd} s p {_xﬁj ) p{xh} ' p(:’;r]xﬂ« jﬂh) : p(xd[xi.}

- Bayesian networks have been used to deduce gene regulatory
networks from gene expression data. The aim is to find the network (or
equivalence class of networks) that best explains the measured data.

* Another problem is the determination of initial probability distributions.

29
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Description with: Boolean networks (1)

* |n a Boolean network, the expression level of each
gene is assigned to a binary variable: a gene is
considered to be either on (1) or off (0) — (i. e., it is
transcribed or not).

« The states of the genes are updated simultaneously in
discrete time steps.

* The new state can depend on the previous state of the
same gene or other genes. These dependencies cause
the Boolean network.

The following termini are used:
— the N gene are the N nodes of the network,

— the k interactions regulating the expression of a certain gene
are the k inputs of that node,

— the binary expression value of each gene is its output.

30



Description with: Boolean networks (2)

31

Since every node can be in one of two
different states, a network of N genes can
assume 2N different states. An N-
dimensional vector of variables can
describe the state at time t.

The value of each variable at time t+1
depends on the values of its inputs and it
can be computed by means of the Boolean
rules.

For a node with k inputs, the number of
possible Boolean rules is 22°,

Although a Boolean network is a very
simplified representation of the gene
regulatory network, it enables a first
computation of gene expression dynamics.

Boolean network

T

ﬂ"‘a \
\/

O ——

C ——J‘
ali+1) = alf)
B(i+1) = (not e(f)) and (1)

)
c(i+1)
)

a(t) and b(f)
dii+1) =n

ot cif)

—_—



Description with: Boolean networks (3)

« The sequence of states given by the Boolean
transitions represents the trajectory of the system.
Since the number of states in the state space is finite,
the number of possible transitions is also finite.

« Therefore, each trajectory will lead either to a steady
state or to a state cycle. These states are called
attractors.

* Transient states are those states that do not belong to
an attractor.

 All states that lead to the same attractor constitute the
basin of attraction.

32
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For the network presented in Fig. 8.2d the following Boolean rules apply:

a(t+ ) =fo(a®))=a®) Rule 1 for k=1

b{(t+ 1) = fi(c(b), d(1)) = (not ¢(2)) and d (1) Rule 2 for k=2

c(t+ 1) = fc(a(b), b(t)) = a(l) and b(L) Rule 2 for k=2

d(t+ 1) = fi(c(t) = (not c(t)) Rule O for k=1

The temporal behavior is determined by the sequence of states (a, b, ¢, d) given an
initial statc (compare also Section 10.3.3).

I'rom ‘lab. 8.1 it is easy to see that this network has two different types of stationary
behavior. If the initial state of a is 0, then the system evolves towards the steady
state 0101, meaning that genes a and ¢ are off, while genes b and d are on. If the in-
itial state of a is 1, then the system evolves towards a cyclic behavior including the
following sequence of states: 1000 — 1001 — 1101 — 1111 — 1010 — 1000.

Tab. 8.1 Successive states in the Boolean network.

0000 — 0001
0001 — 0101
0010 — 0000
0011 —+ 0000
0100 — 0001
0101 — 0101
0110 — 0000
0111 — 0000

1000 — 1001
1001 — 1101
1010 — 1000
1011 » 1000
1100 — 1011
1101 — 1111
1110 — 1010
1111 = 1010
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1. Tyson JJ, Chen KC, Novak B. - Sniffers, buzzers, toggles and
blinkers: dynamics of requlatory and signaling pathways in the

cell. - Curr Opin Cell Biol. 2003 Apr;15(2):221-31. Review. PMID:
12648679

v This article is also a good introduction to the quest for a shared
representational language that can help physiologists/biologists and
mathematicians/computer scientists compare wet lab results and
numerical models.

2. E. Klipp, Systems Biology in Practice, Wiley-VCH, 2005
 Chapter 8
» and chapter 3 for an introduction on maths
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Cooperative Ligand Binding Can Be Described
Quantitatively

Cooperative binding of oxygen by hemoglobin was first
analyzed by Archibald Hill in 1910. From this work came
a general approach to the situdy of cooperative ligand
binding to multisubunit proteins.

For a protein with 7 binding sites, the equilibrium
of Equation 5-1 becomes

P +xnlL =—— PL, (5-12)

“and the expression for the association constant becomes

-~ _ [PL,] -
K, = (PIL" (5—-13)
The expression for 6 (see Bgn 5-8) is
Nt SV :
0= 117 T K, 8 5-14)

Rearranging, then taking the log of both sides, vields

e  [LI" , .
{6 ., 2 .
logll_ﬁ):nlog L] — log K, & (5-16)

where Kd — [L E“;"“y

Appendix:
Hill coefficient
(1)

Images from:
D. L. Nelson, Lehninger Principles of
Biochemistry, IV Edition — Chapter 5



bion 516 1 the 1 equation, anc 2 piot ot [T

log 18/(1 — 0)] versus log [Lis called a Hill plot. Based
on the equation, the Hill plot should have a slope of .

However, the experimentally determined slope actually Append ix iy
teflects not the number of binding sites but the degree

of interaction between them. The slope of a Hill plot is Hi ll CogﬁiCient
therefore denoted by 7y, the Hill coefficient, which

Is ameasure of the degree of cooperativity. If 72;; equals (Z)

I, ligand binding is not cooperative, a situation that can

arige even in a multisubunit protein if the subunits do

not commmunicate. An 7y of greater than 1 indicates

positive cooperativity in ligand binding. This is the

Situation observed in hermaoglebin, in which the binding

0f one molecule of ligand facilitates the binding of

‘others. The theoretical upper limit for #y is reached

when 7y = 2. In this case the binding would be com-

pletely cooperative: all binding sites on the protein

would bind ligand simultaneously, and no protein mol-

“gcules partially saturated with ligand would be present

under any conditions. This limit is never reached in

practice, and the measured value of 7y is always less
than the actual number of ligand-binding sites in the

protein.
An nyy of less than 1 indicates negative cooperativ-
ity, in which the binding of one molecule of ligand - Images from:
pedes the binding of others. Well-documented cases of D. L. Nelson, Lehninger Principlés of

negative cooperativity are rare. Biochemistry, IV Edition — Chapter 5



