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Lecture 14:  
Mathematical representation of biological processes:

Dynamic signalling 
and

Gene Expression Regulation

Images and text from: Tyson JJ - Sniffers, buzzers, toggles and blinkers. 
Curr Opin Cell Biol. 2003 Apr;15(2):221-31.
E. Klipp, Systems Biology in Practice, Wiley-VCH, 2005 – Chapter 8
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PART 1
Modelling of molecular networks:

Simple modules for building complex dynamic networks

• Linear and hyperbolic                     Signal response curves

• Sigmoidal (buzzer)
• Perfectly adapted (sniffer)
• Positive feedback

– Mutual activation (one way switch)
– Mutual inhibition (toggle switch)

• Negative feedback
– homeostasis 
– oscillations (Blinker)
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Introduction: 
molecular networks vs. circuit design

• A molecular network looks strikingly similar to the wiring 
diagram of a modern electronic gadget. Instead of resistors, 
capacitors and transistors hooked together by wires, one sees 
genes, proteins and metabolites hooked together by chemical 
reactions and intermolecular interactions. 

• Complex molecular networks, like electrical circuits, seem to be 
constructed from simpler modules: sets of interacting genes and 
proteins that carry out specific tasks and can be hooked 
together by standard linkages.

• Simple signalling pathways can be embedded in networks using 
positive and negative feedback to generate more complex 
behaviours — toggle switches and oscillators — which are the 
basic building blocks of the exotic, dynamic behaviour shown by 
nonlinear control systems. 
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Linear signal-response curve (1)

• A simple example of protein 
dynamics: protein synthesis 
and degradation 

• Using the law of mass 
action, we can write the rate 
equation

• S = signal strength (e.g. 
concentration of mRNA) 

• R = response magnitude 
(e.g. concentration of 
protein)

RkSkk
dt
dR

210 
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Linear (2)

• A steady-state solution of a 
differential equation, dR/dt = f(R), is 
a constant, Rss, that satisfies the 
algebraic equation f(R)=0.

• In most cases, such simple 
components are embedded in more 
complex pathways, to generate 
signal-response curves of more 
adaptive value. 

• Diagram representing the strength of 
the signal response in as function of 
the signal strength

2

10

k
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Hyperbolic signal-response curve (1)

• Another simple example of protein 
dynamics: protein phosphorylation 
and de-phosphorylation

• RP = the phosphorylated form of the 
response element (which we 
suppose to be the active form)

• RP =[RP], and RT = R + RP = total 
concentration of the response 
element. RkSkk

dt
dR

210 



computational systems biology

7

Hyperbolic (2)

• A steady-state solution , for 
f(R)=0.

• In most cases, such simple 
components are integrated in 
more complex pathways, for 
example to generate signal-
response curves of more 
adaptive value. 

Skk
RtSR ssP




)/( 12
,
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Integration of simple modules 
to obtain adaptation

From: D. L. Nelson, Lehninger Principles of Biochemistry, IV Edition –
Chapter 12 Biosignaling



computational systems biology

9

Sigmoidal signal-response curve (1)
• The sigmoidal case (c) is a 

modification of case (b), where the 
phosphorylation and de-
phosphorylation reactions are 
governed by Michaelis-Menten 
kinetics.

• The steady-state solution of the 
quadratic equation is the Goldbeter-
Koshland function.

• The sigmoid shape represents a 
switch (for a small difference in signal the 
response at a certain threshold switches: 
from null to high, from off to on, from 0 to 1)
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Sigmoidal signal-response curve (2):  buzzer
• The Goldbeter–Koshland function, although switch-

like, shares with linear and hyperbolic curves the 
properties of being graded and reversible. 

• Graded = the response increases continuously with 
signal strength. A slightly stronger signal gives a 
slightly stronger response. 

• Reversible = if the signal strength is changed from Sinitial to Sfinal, the 
response at Sfinal is the same whether the signal is being increased 
(Sinitial < Sfinal) or decreased (Sinitial > Sfinal) 

• Although continuous and reversible, a sigmoidal response is abrupt. Like 
a buzzer or a laser pointer, to activate the response one must push hard 
enough on the button, and to sustain the response one must keep 
pushing. 

• When one lets up on the button, the response switches off at precisely 
the same signal strength at which it switched on. 
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Perfect adaptation:  sniffer
• By supplementing the simple linear response 

element (Figure a) with a second signalling 
pathway (through species X), we obtain 
perfect adaptation to the signal. 

• Perfect adaptation: although the signalling 
pathway exhibits a transient response to 
changes in signal strength, its steady-state 
response Rss is independent of S. 

• This is typical of chemotactic systems, which 
respond to an abrupt change in attractants or 
repellents, but then adapt to a constant level 
of the signal. 

• Our own sense of smell operates this way, so 
we refer to this type of response as a 
‘sniffer.’
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Positive feedback: switches
• In Figure d the signal influenced the response 

via two parallel pathways that push the 
response in opposite directions (an example 
of feed-forward control). 

• Alternatively, some component of a response 
pathway may feed back on the signal. 
Feedback can be positive, negative or mixed.

• There are two types of positive feedback:
• In Figure e, R activates protein E (by 

phosphorylation), and EP enhances the 
synthesis of R. 

• In Figure f, R inhibits E, and E promotes the 
degradation of R; hence, R and E are 
mutually antagonistic. 

mutual activation

mutual inhibition
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• In either case (mutual activation or antagonism), 
positive feedback may create a discontinuous 
switch, meaning that the cellular response 
changes abruptly and irreversibly as signal 
magnitude crosses a critical value. 

• In Figure e, as signal strength (S) increases, the 
response is low until S exceeds some critical 
intensity, Scrit, at which point the response 
increases abruptly to a high value.

Irreversible switch: one way switch
(e)

• Then, if S decreases, the response stays high (i.e. the switch is irreversible; 
unlike a sigmoidal response, which is reversible). 

• Notice that, for S values between 0 and Scrit, the control system is ‘bistable’ — that is, it has two 
stable steady-state response values (on the upper and lower branches — the solid lines) separated 
by an unstable steady state (on the intermediate branch — the dashed line).
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Reversible switch:  toggle switch

• In the toggle switch, if S is decreased 
enough, the switch will go back to the off-
state, as in Figure f. 

• For intermediate stimulus strengths 
Scrit1 < S < Scrit2

the response of the system can be either 
small or large, depending on how S was 
changed. 

(f)

• This sort of two-way, discontinuous switch is often referred to as 
hysteresis. 

• Examples include: the lac operon in bacteria, the activation of M-phase-promoting factor 
(MPF) in frog egg extracts, and the autocatalytic conversion of normal prion protein to its 
pathogenic form.

• While one-way switches play roles in processes characterized by a point-of-no-return, 
like frog oocyte maturation in response to progesterone or apoptosis  (regulated cell 
death).
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Some Math: 
bifurcations

• The signal-response curves in Figure e and f would be called ‘one-
parameter bifurcation diagrams’ by an applied mathematician. 

• The parameter is signal strength (manipulable by the experimenter). 
The steady-state response, on the Y axis, is an indicator of the 
behaviour of the control system as a function of the signal. 

• At Scrit, the behaviour of the control system changes abruptly and 
irreversibly from low response to high response (or vice versa). 

• Such points of qualitative change in the behaviour of a nonlinear 
control system are called bifurcation points, in this case, a ‘saddle-
node bifurcation point’. 

• Other, more esoteric bifurcation points, are associated with more 
complex signal-response relationships.



computational systems biology

16

Negative feedback: homeostasis

• In negative feedback, the response 
counteracts the effect of the stimulus. 

• In Figure g, the response element, R, inhibits 
the enzyme catalysing its synthesis

• The steady state concentration of R is 
confined to a narrow window for a broad 
range of signal strengths, because the supply 
of R adjusts to its demand. 

• This type of regulation, commonly employed 
in biosynthetic pathways, is called 
homeostasis. 

• (It is a kind of imperfect adaptation, but it is not a 
sniffer because stepwise increases in S do not 
generate transient changes in R.)
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Negative feedback:  blinker
• Negative feedback can also create an oscillatory 

response. A two-component, negative feedback 
loop, X→R—|X, can exhibit damped oscillations to 
a stable steady state but not sustained
oscillations

• Sustained oscillations require at least three 
components: X→Y→R––|X. The third component 
(Y) introduces a time delay in the feedback loop, 
causing the control system repeatedly to overshoot 
and undershoot its steady state

• Negative feedback has been proposed as a basis 
for oscillations in protein synthesis, MAPK 
signalling pathways, and circadian rhythms 

• Elowitz and Leibler designed an artificial genetic network 
consisting of three operons that repress one another in a 
loop. Individual bacteria containing these plasmids 
showed periodic expression of a fluorescent reporter 
protein, qualifying this case as a literal ‘blinker’.
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PART 2
Modelling molecular networks:

Gene expression regulation

Modelled with:

• Ordinary differential equations
• Directed and undirected graphs
• Bayesian networks
• Boolean networks

• and (not covered here): stochastic equations, partial differential 
equations, rule-based formalisms and many others…

Im
ages and text from

: E
. K

lipp, S
ystem

s B
iology 
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H
, 2005 –

C
hapter 8
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One example, many approaches (1)

• A network of interactions among DNA, RNA, proteins, and other 
molecules realises the regulation of gene expression. 

• There is forward flow of information from gene to mRNA to protein 
according to the dogma of molecular biology. 

• Moreover, positive and negative feedback loops and information 
exchange with signalling pathways and energy metabolism ensure 
the appropriate regulation of the expression according to the 
actual state of the cell and its environment 

• Modelling of gene expression is an example of a scientific field 
where one may obtain results with different techniques. 
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One example, many approaches (2)

• The example presented here contains four genes, a through d, which code for the proteins A 
through D. 

• mRNA is not shown for sake of simplicity. 

• The proteins A and B may form a heterodimer that activates the expression of gene c. 

• Protein C inhibits the expression of genes band d, which are in this way co-regulated. 

• Protein D is necessary for the transcription of protein B. 
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Description with: Ordinary Differential Equations (1)

• Gene expression can be mathematically described with systems 
of ordinary differential equations in the same way as metabolism 
(Chapter 5) or signalling (Chapter 6)

• In general, one considers:

• The variables xi represent the concentrations of mRNAs, 
proteins, or other molecules. The functions fi comprise the rate 
equations that express the changes of xi due to transcription, 
translation, or other individual processes. 

nixxf
dt
dx

ni
i ,...,1   ),...,( 1 
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Description with: Ordinary Differential Equations (2)

 If we also consider the depicted 
regulatory interactions

Here, ka, kb, kc, and kd are the first-order rate constants 
of the degradation of a, b, c, and d, respectively.
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• The ODE formalism allows involving more details, e.g. we can 
distinguish between the processes determining the velocity of 
translation (basic rate Vb and inhibition by protein C), transcription 
(dependence on mRNA concentration b and on the activator 
concentration D), and degradation or consumption on both levels 
(degradation of band B and formation of complex AB). 

• The advantage: ODE systems take into account detailed 
knowledge about gene regulatory mechanisms such as individual 
kinetics, individual interactions of proteins with proteins or proteins 
with mRNA.

• The disadvantage: the current lack of exactly this type of 
knowledge - the lack of kinetic constants due to measurement 
difficulties and uncertainties in the function of many proteins and 
their interactions. 

Description with: Ordinary Differential Equations (3)
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Description with: Ordinary Differential Equations (4)
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• A directed graph G is a tuple <V, E>, 
where V denotes a set of vertices 
and E a set of edges. 

• The vertices iV correspond to the 
genes (or other components of the 
system) and the edges correspond 
to their regulatory interactions. 

• In a general way, one may express 
an edge as a tuple <i,j, properties>.

• Properties can indicate whether j
activates (+) or inhibits (-) i .

Description with:

Directed and Undirected graphs (1)
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• Many databases are organized as richly annotated 
directed graphs (e.g., Transfac and KEGG). 

• Directed graphs cannot represent the dynamics of a 
network, but they allow certain predictions about 
network properties: 
– Tracing paths between genes yields the sequence of regulatory 

events, shows redundancy in the regulation, or indicates 
missing regulatory interactions.

– A cycle in the network may indicate feedback regulation. 
– Comparison of gene regulatory networks of different organisms 

may reveal evolutionary relations and reveal targets for 
pharmaceutical applications .

– The network complexity can be measured by the connectivity

Description with:

Directed and Undirected graphs (2)
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Description with: Bayesian networks (1)
• A Bayesian network  is based on the representation of the regulatory 

network as a directed acyclic graph G = <V, E>, where the vertices i 
V represent genes and edges denote regulatory interactions.

• Variables xi belonging to the vertices i denote a property relevant to the 
regulation, e. g., the expression level of a gene or the amount of active 
protein. 

• A conditional probability distribution p(xi|L(xi)) is defined for each xi, 
where L(xi) are the parent variables be the direct regulators of i. 

• The directed graph G and the conditional distribution together specify a 
joint probability distribution p(x) that determines the Bayesian network. 
The joint probability distribution can be decomposed into:

))(|()( i
i

i xLxpxp 
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Description with: (2)

Note:
some interactions are 
neglected:

- inhibition of b by c, 

- activation of b by d

in order to get a network 
without cycles.
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• The directed graph expresses dependencies of probabilities: the 
expression level of a gene represented by a child vertex depends on 
the expression levels of genes belonging to the parent vertices. 

• It also implies conditional independence i (xi; y I z), meaning that xi is 
independent of the set of variables y given the set of variables z. 

• Bayesian networks have been used to deduce gene regulatory 
networks from gene expression data. The aim is to find the network (or 
equivalence class of networks) that best explains the measured data. 

• Another problem is the determination of initial probability distributions. 

Description with: Bayesian networks (3)
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Description with: Boolean networks (1)

• In a Boolean network, the expression level of each 
gene is assigned to a binary variable: a gene is 
considered to be either on (1) or off (0) – (i. e., it is 
transcribed or not).

• The states of the genes are updated simultaneously in 
discrete time steps. 

• The new state can depend on the previous state of the 
same gene or other genes. These dependencies cause 
the Boolean network.

• The following termini are used: 
– the N gene are the N nodes of the network, 
– the k interactions regulating the expression of a certain gene 

are the k inputs of that node, 
– the binary expression value of each gene is its output. 
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Description with: Boolean networks (2)
• Since every node can be in one of two 

different states, a network of N genes can 
assume 2N different states. An N-
dimensional vector of variables can 
describe the state at time t. 

• The value of each variable at time t+1 
depends on the values of its inputs and it 
can be computed by means of the Boolean 
rules. 

• For a node with k inputs, the number of 
possible Boolean rules is 22^k. 

• Although a Boolean network is a very 
simplified representation of the gene 
regulatory network, it enables a first 
computation of gene expression dynamics.



computational systems biology

32

Description with: Boolean networks (3)

• The sequence of states given by the Boolean 
transitions represents the trajectory of the system. 
Since the number of states in the state space is finite, 
the number of possible transitions is also finite.

• Therefore, each trajectory will lead either to a steady 
state or to a state cycle. These states are called 
attractors. 

• Transient states are those states that do not belong to 
an attractor. 

• All states that lead to the same attractor constitute the 
basin of attraction. 
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B
oolean netw

orks (4)



computational systems biology

34

Reading

1. Tyson JJ, Chen KC, Novak B. - Sniffers, buzzers, toggles and 
blinkers: dynamics of regulatory and signaling pathways in the 
cell. - Curr Opin Cell Biol. 2003 Apr;15(2):221-31. Review. PMID: 
12648679

 This article is also a good introduction to the quest for a shared 
representational language that can help physiologists/biologists and 
mathematicians/computer scientists compare wet lab results and 
numerical models.

2. E. Klipp, Systems Biology in Practice, Wiley-VCH, 2005
• Chapter 8 
• and chapter 3 for an introduction on maths



computational systems biology

35

Appendix:
Hill coefficient 

(1)

Images from: 
D. L. Nelson, Lehninger Principles of 
Biochemistry, IV Edition – Chapter 5
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Appendix:
Hill coefficient 

(2)

Images from: 
D. L. Nelson, Lehninger Principles of 
Biochemistry, IV Edition – Chapter 5


