

1

Computational Systems Biology

Lecture 2: Enzymes

Images from: David L. Nelson, Lehninger Principles of Biochemistry, IV Edition, Freeman ed. or under creative commons license (search for images at http://search.creativecommons.org/)

Suggested reading

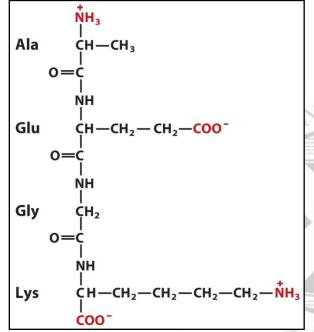
Book:

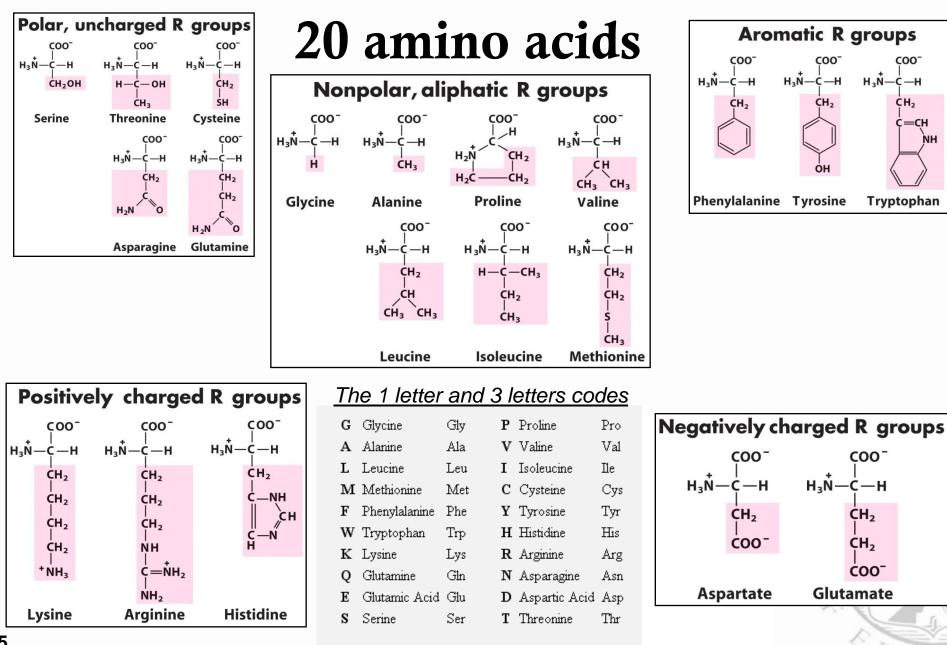
David L. Nelson, Lehninger - Principles of Biochemistry, 4th Edition (or 3rd Edition), W. H. Freeman ed. <u>http://bcs.whfreeman.com/lehninger/</u>

- Enzymes
 - Lehninger Chapter 1.3 Enzymes promote sequences of chemical reactions (pp 26-27)
 - Lehninger Chapter 3 Amino acids, peptides and proteins (pp 75-89, for general reference)
 - Lehninger Chapter 6 Enzymes (pp 190-200, for general reference)

(page numbers refer to the 4th edition)

Summary

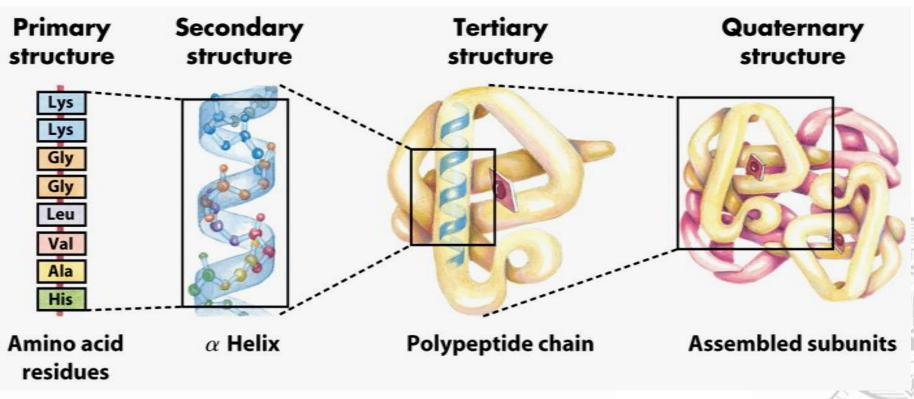

- What is an enzyme
- Enzymes 3D structures
- How enzyme work: enzymatic catalysis
- The Enzyme Classification (EC) codes



Enzymes are proteins

- In general, a protein is a chain of **amino acids** (aa) covalently linked (when the chain is short ~5-10 aa, the protein is often called oligopeptide/polypeptide or simply peptide)
- Thousands of different proteins are built with the same ubiquitous set of 20 amino acids (the protein "alphabet")
- Some proteins have structural roles (e.g. actin in the muscles), other have catalytic (chemical-reaction-making) activity and are called enzymes
- A polypeptide with 4 amino acids (Ala-Glu-Gly-Lys)
- The electrically charged groups are shown in red
- In a longer protein the electrically charged lateral groups can line a pocket of the enzyme 3D structure to generate an active reaction site (see following slides)

Proteins come in all shapes and sizes


TABLE 3-2 Molecular Data on Some Proteins

	Molecular weight	Number of residues	Number of polypeptide chains
Cytochrome c (human)	13,000	104	1
Ribonuclease A (bovine pancreas)	13,700	124	1
Lysozyme (chicken egg white)	13,930	129	1
Myoglobin (equine heart)	16,890	153	1
Chymotrypsin (bovine pancreas)	21,600	241	3
Chymotrypsinogen (bovine)	22,000	245	1
Hemoglobin (human)	64,500	574	4
Serum albumin (human)	68,500	609	1
Hexokinase (yeast)	102,000	972	2
RNA polymerase (E. coli)	450,000	4,158	5
Apolipoprotein B (human)	513,000	4,536	1
Glutamine synthetase (E. coli)	619,000	5,628	12
Titin (human)	2,993,000	26,926	1

Enzymes 3D structure

• Enzymes are proteins and their activities depends on the 3D structure of the amino acids that compose them (note: also some RNAs have catalytic activity but they won't be covered in this course)

PDB - Database of protein structures

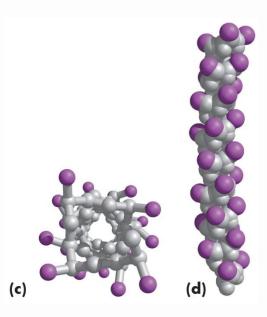
- PDB (RCSB Protein Data Bank)
- http://www.rcsb.org/pdb/home/home.do
- How is the data collected? Every 3D protein sequence has to be deposited in PDB before publication in reviewed journals

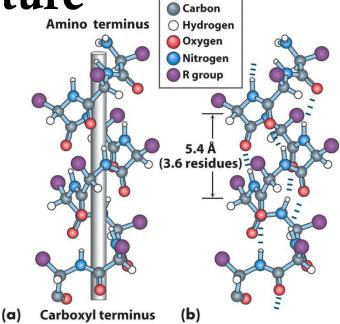
A MEMBER OF THE PDB

An Information Portal to Biological Macromolecular Structures

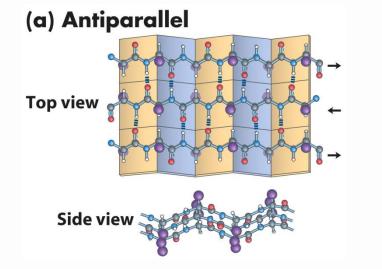
As of Tuesday Dec 19, 2006 🔕 there are 40749 Structures 🕜 | PDB Statistics 🥝

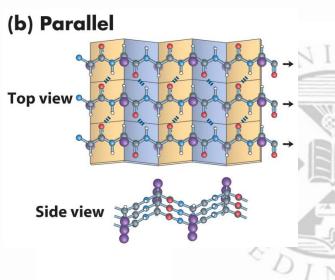
PDB ID or keyword	d 🕥 Author		SEA	RCH 🕜 Ad	vanced Searc	h		
Structure Summary	Biology & Chemis	try Mater	ials & Metho	ds Sequence	e Details 0	ieomet ry		
					Lea	arn more: [r	1] 1HTB 🗎	Images and Visualization Biological Molecule / Asymmetric Un
Title	CRYSTALLIZAT IN 100 MM SOD 4-IODOPYRAZO	IUM PHOS	SPHATE (PI				E (10 MG/ML)	
Authors	Hurley, T.D., I	Davis, G.	J.					
Primary Citation	Davis, G.J., Bosron, W.F., Stone, C.L., Owusu-Dekyi, K., Hurley, T.D. X-ray structure of human beta3beta3 alcohol dehydrogenase. The contribution of ionic interactions to coenzyme binding. J.Biol.Chem. v271 pp.17057-17061, 1996 [Abstract]							
History	Deposition 1995-08-10 Release 1995-12-07							
Experimental Method	Type X-RAY DIFFRACTION Data 🗎 [EDS]							
Parameters	Resolution[Å] 📰 2.40	R-Val 0.175	ue 5 (obs.)	R-Free 0.243		Space Grou P 1	qu	Display Options KiNG Jmol WebMol
Unit Cell	Length [Å] Angles [°]	a alpha	54.03 92.71	b beta	44.43 103.17	c gamma	92.74 69.15	Protein Workshop QuickPDB
Molecular								All Images

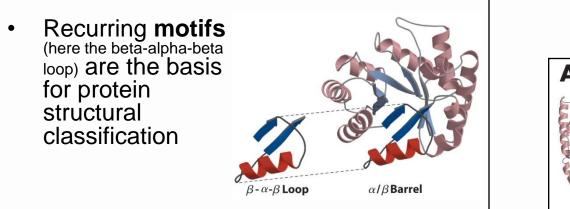

8

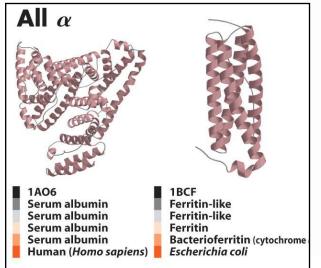

Secondary structure

 Common secondary structures are alpha helixes

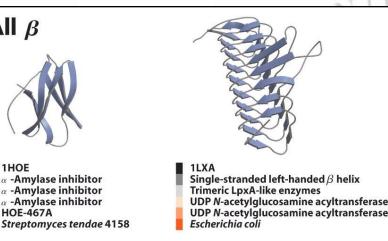

CSD


(here in different graphical representations)


And beta sheets



Structural domains



Enzymes with similar sequences and structural domains / motifs are classified in the same protein family

PDB identifier Fold Superfamily Family Protein **Species**

All B

1HOE

Interpro: the protein families database

- InterPro is a database of protein families, domains and functional sites
- Identifiable features found in known proteins can also be scanned against unknown protein sequences
- (here an example of domain common to enzymes that use iron as cofactor to cut an hydrogen atom from an alcool).

InterPro incorporates data from other databases

InterPro IPR001670 Iron-containing alcohol dehydrogenase

Matches 🧿	Detailed:	sorted by AC, sorted by AC, For all matchi		sorted by name, sorted by name, of known structure				
Accession 🍘	IPR001670 Fe_ADH Matches: 1309 proteins							
Type 🍞	Domain							
	Database	ID	Name	Proteins				
Signatures 🔗	<u>Pfam</u>	PF00465	Fe-ADH	1293				
	PROSITE patte	ern <u>PS00060</u>	ADH_IRON	_2 589				
	PROSITE patte	ern <u>PS00913</u>	ADH_IRON	_1 842				
Example pr	oteins 🍞							

005239 Probable NADH-dependent butanol dehydrogenase 1 (EC 1.1.1.-)

P10127 Alcohol dehydrogenase 4 (EC 1.1.1.1) (Alcohol dehydrogenase IV)

P74246 Hypothetical oxidoreductase slr1167 (EC 1.1.-.)

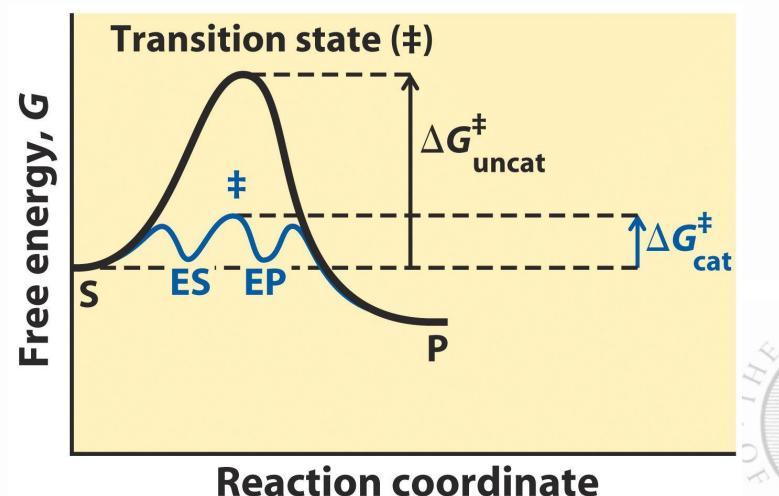
Q09669 Alcohol dehydrogenase 4 (EC 1.1.1.1) (Alcohol dehydrogenase IV)

Q24803 Aldehyde-alcohol dehydrogenase 2 (Includes: Alcohol dehydrogenase (EC 1.1.1.1) (Al

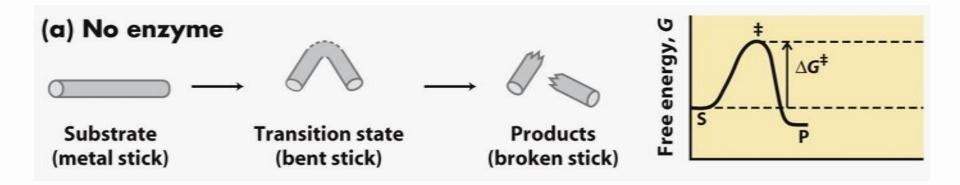
<u>More proteins</u>

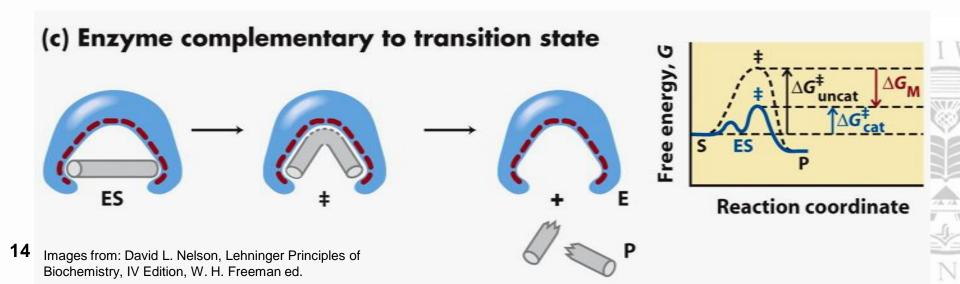
IPR001676 Iron-containing alcohol dehydrogenase

IPR012079 Bifunctional aldehyde/alcohol dehydrogenase


How enzymes work

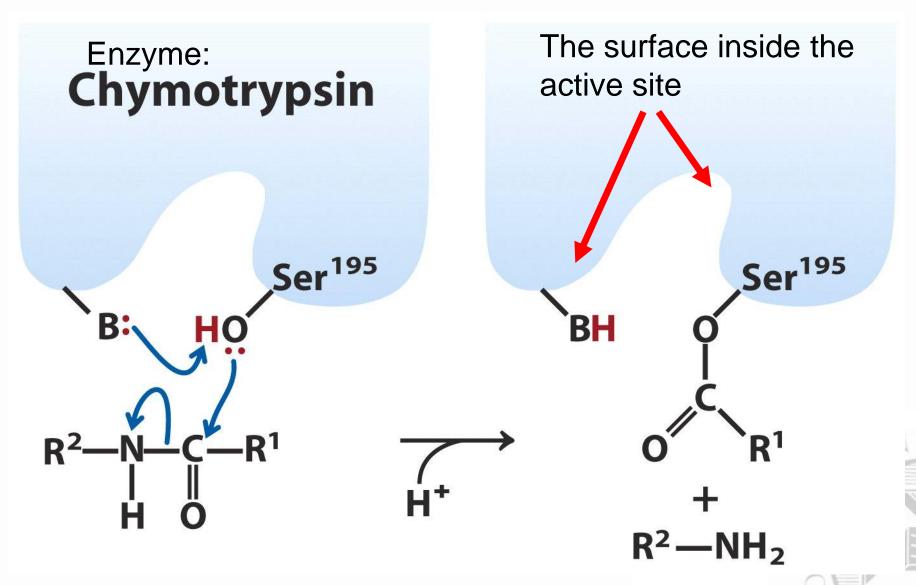
- <u>IMPORTANT</u>: enzymes do NOT and cannot affect the equilibrium / free energy difference of a reaction
- Enzymes enhance the reaction rates (molecules produced per second) by lowering the activation energy of the transition state $\Delta G^{\ddagger}_{cat}$


Transition state energy changed by an enzyme (in blue)



Images from: David L. Nelson, Lehninger Principles of Biochemistry, IV Edition, W. H. Freeman ed.

The enzyme action on the transition state



The enzyme active site

The red molecule is the substrate, the active site appears painted in red

You can see a flash demo of this enzymatic reaction on: <u>http://bcs.whfreeman.com/lehninger/</u> clicking on → Chapter 6: Enzymes → **16**mechanism animation → fig 6.21 mechanism for chymotrypsin

Images from: David L. Nelson, Lehninger Principles of Biochemistry, IV Edition, W. H. Freeman ed.

E.C. Enzyme nomenclature

- Enzymes are named depending on the reaction they catalyse.
- Examples of enzyme groups are:
 - EC 1 Oxidoreductases
 - EC 2 Transferases
 - EC 3 Hydrolases
 - EC 4 Lyases
 - EC 5 Isomerases
 - EC 6 Ligases

An example of E.C. enzyme nomenclature

EC 3. Hydrolases

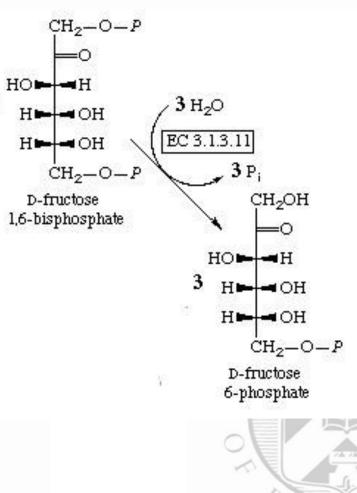
- ➢ EC 3.1 Hydrolases Acting on Ester Bonds
 - EC 3.1.3 Phosphoric Monoester Hydrolases
 - EC 3.1.3.1 alkaline phosphatase
 - EC 3.1.3.2 acid phosphatase
 - EC 3.1.3.3 phosphoserine phosphatase
 - EC 3.1.3.4 phosphatidate phosphatase
 - EC 3.1.3.5 5'-nucleotidase
 - EC 3.1.3.6 3'-nucleotidase
 - EC 3.1.3.7 3'(2'),5'-bisphosphate nucleotidase
 - EC 3.1.3.8 3-phytase
 - EC 3.1.3.9 glucose-6-phosphatase
 - EC 3.1.3.10 glucose-1-phosphatase
 - EC 3.1.3.11 fructose-bisphosphatase

Example: fructose-bisphosphatase EC 3.1.3.11

3

From the IUBMB (International Union of Biochemistry and Molecular Biology) web site:

http://www.chem.qmul.ac.uk/iubmb/enzyme/


one can reach a record for the enzyme: EC 3.1.3.11 (fructose-bisphosphatase):

http://www.chem.qmul.ac.uk/iubmb/enzyme/EC3/1/3/11.ht ml

The site also contains the reaction diagram shown here: http://www.chem.qmul.ac.uk/iubmb/enzyme/reaction/polys acc/Calvin2.html

The reaction involves the hydrolysis (separation) of a phosphate group here represented by P_i

The "P" representing the phosphate group that appears on the top region of the D-fructose-1,6-biphosphate substrate molecule has disappeared after the reaction, and the product is now called Dfructose 6-phospate (the phosphate group in position 1 is no more there).

