Stream ciphers

Myrto Arapinis
School of Informatics
University of Edinburgh

October 2, 2017
A symmetric cipher consists of two algorithms

- encryption algorithm $E : \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{C}$
- decryption algorithm $D : \mathcal{K} \times \mathcal{C} \rightarrow \mathcal{M}$

such that $\forall k \in \mathcal{K}, \quad \forall m \in \mathcal{M}, \quad D(k, E(k, m)) = m$

Kerckhoff’s principle

- The encryption (E) and decryption (D) algorithms are public
- The security relies entirely on the secrecy of the key
Adversarie’s capabilities - threat model

The attacker may have access to:

- some ciphertexts c_1, \ldots, c_n
- some plaintext/ciphertext pairs $(m_1, c_1), \ldots, (m_n, c_n)$ st. $c_i = E(k, m_i))$
- an encryption oracle - he can maybe trick a user to encrypt messages m_1, \ldots, m_n of his choice
- a decryption oracle - he can maybe trick a user to decrypt ciphertexts c_1, \ldots, c_n of his choice
- unlimited, or polynomial, or realistic ($\leq 2^{80}$) computational power

- A cryptographic scheme is secure under some assumptions, that is against a certain type of attacker
- A cryptographic scheme may be vulnerable to certain types of attacks but not others
What is a good encryption scheme?

An encryption scheme is secure against a given adversary, if this adversary cannot

- recover the secret key k
- recover the plaintext m underlying a ciphertext c
- recover any bits of the plaintext m underlying a ciphertext c
- ...
The One-Time Pad (OTP)

\[M = C = K = \{0, 1\}^n \]

Encryption:
\[\forall k \in K, \forall m \in M, E(k, m) = k \oplus m \]

\[k = 01101001 \]
\[m = 10001011 \]
\[c = 11100010 \]

Decryption:
\[\forall k \in K, \forall c \in C, D(k, c) = k \oplus c \]

\[k = 01101001 \]
\[c = 11100010 \]
\[m = 10001011 \]

Consistency:
\[D(k, E(k, m)) = k \oplus (k \oplus m) = m \]
The One-Time Pad (OTP)

- $\mathcal{M} = \mathcal{C} = \mathcal{K} = \{0, 1\}^n$
The One-Time Pad (OTP)

- $M = C = K = \{0, 1\}^n$
- Encryption: $\forall k \in K. \forall m \in M. E(k, m) = k \oplus m$
The One-Time Pad (OTP)

- $\mathcal{M} = \mathcal{C} = \mathcal{K} = \{0, 1\}^n$
- Encryption: $\forall k \in \mathcal{K}. \forall m \in \mathcal{M}. E(k, m) = k \oplus m$

\[
\begin{array}{cccccccc}
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}
\]

\[
c = 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1
\]
The One-Time Pad (OTP)

- $\mathcal{M} = \mathcal{C} = \mathcal{K} = \{0, 1\}^n$

- Encryption: $\forall k \in \mathcal{K}. \forall m \in \mathcal{M}. E(k, m) = k \oplus m$

 \[
 \begin{align*}
 k &= 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \\
 m &= 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \\
 \hline \\
 c &= 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0
 \end{align*}
 \]

- Decryption: $\forall k \in \mathcal{K}. \forall c \in \mathcal{C}. D(k, c) = k \oplus c$
The One-Time Pad (OTP)

- \(\mathcal{M} = \mathcal{C} = \mathcal{K} = \{0,1\}^n \)
- Encryption: \(\forall k \in \mathcal{K}. \forall m \in \mathcal{M}. E(k,m) = k \oplus m \)

\[
\begin{align*}
 k &= 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \\
 m &= 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \\
 c &= 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \\
\end{align*}
\]

- Decryption: \(\forall k \in \mathcal{K}. \forall c \in \mathcal{C}. D(k,c) = k \oplus c \)

\[
\begin{align*}
 k &= 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \\
 c &= 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \\
 m &= 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \\
\end{align*}
\]
The One-Time Pad (OTP)

- $\mathcal{M} = \mathcal{C} = \mathcal{K} = \{0, 1\}^n$
- Encryption: $\forall k \in \mathcal{K}. \forall m \in \mathcal{M}. E(k, m) = k \oplus m$

 $k = 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1$

 $m = 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1$

 $c = 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0$

- Decryption: $\forall k \in \mathcal{K}. \forall c \in \mathcal{C}. D(k, c) = k \oplus c$

 $k = 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1$

 $c = 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0$

 $m = 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1$

- Consistency: $D(k, E(k, m)) = k \oplus (k \oplus m) = m$
Perfect secrecy

Definition

A cipher \((E, D)\) over \((\mathcal{M}, \mathcal{C}, \mathcal{K})\) satisfies perfect secrecy if for all messages \(m_1, m_2 \in \mathcal{M}\) of same length \(|m_1| = |m_2|\), and for all ciphertexts \(c \in \mathcal{C}\)

\[
|\Pr(E(k, m_1) = c) - \Pr(E(k, m_2) = c)| \leq \epsilon
\]

where \(k \xleftarrow{\$} \mathcal{K}\) and \(\epsilon\) is some “negligible quantity”.
OTP satisfies perfect secrecy

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy
OTP satisfies perfect secrecy

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages $m \in M$ and all ciphertexts $c \in C$

$$Pr(E(k, m) = c)$$

where $k \leftarrow \mathcal{K}$.
OTP satisfies perfect secrecy

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages \(m \in \mathcal{M} \) and all ciphertexts \(c \in \mathcal{C} \)

\[
Pr(E(k, m) = c) = \frac{\# \{ k \in \mathcal{K} : k \oplus m = c \}}{\# \mathcal{K}}
\]

where \(k \leftarrow \mathcal{K} \).
OTP satisfies perfect secrecy

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages $m \in \mathcal{M}$ and all ciphertexts $c \in \mathcal{C}$

$$Pr(E(k, m) = c) = \frac{\#\{k \in \mathcal{K} : k \oplus m = c\}}{\# \mathcal{K}}$$

$$= \frac{\#\{k \in \mathcal{K} : k = m \oplus c\}}{\# \mathcal{K}}$$

where $k \leftarrow \mathcal{K}$.
OTP satisfies perfect secrecy

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages $m \in \mathcal{M}$ and all ciphertexts $c \in \mathcal{C}$

$$Pr(E(k, m) = c) = \frac{\#\{k \in \mathcal{K}: k \oplus m = c\}}{\#\mathcal{K}}$$

$$= \frac{\#\{k \in \mathcal{K}: k = m \oplus c\}}{\#\mathcal{K}}$$

$$= \frac{1}{\#\mathcal{K}}$$

where $k \overset{\$}{\leftarrow} \mathcal{K}$.
OTP satisfies perfect secrecy

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages \(m \in \mathcal{M} \) and all ciphertexts \(c \in \mathcal{C} \)

\[
Pr(E(k, m) = c) = \frac{\#\{k \in \mathcal{K}: k \oplus m = c\}}{\#\mathcal{K}}
\]

\[= \frac{\#\{k \in \mathcal{K}: k = m \oplus c\}}{\#\mathcal{K}}
\]

\[= \frac{1}{\#\mathcal{K}}
\]

where \(k \leftarrow \mathcal{K} \).

Thus, for all messages \(m_1, m_2 \in \mathcal{M} \), and for all ciphertexts \(c \in \mathcal{C} \)

\[|Pr(E(k, m_1) = c) - Pr(E(k, m_2) = c)| \leq \frac{1}{\#\mathcal{K}}
\]
Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages $m \in \mathcal{M}$ and all ciphertexts $c \in \mathcal{C}$

$$Pr(E(k, m) = c) = \frac{\#\{k \in \mathcal{K}: k \oplus m = c\}}{\#\mathcal{K}}$$

$$= \frac{\#\{k \in \mathcal{K}: k = m \oplus c\}}{\#\mathcal{K}}$$

$$= \frac{1}{\#\mathcal{K}}$$

where $k \leftarrow \mathcal{K}$.

Thus, for all messages $m_1, m_2 \in \mathcal{M}$, and for all ciphertexts $c \in \mathcal{C}$

$$|Pr(E(k, m_1) = c) - Pr(E(k, m_2) = c)| \leq \left|\frac{1}{\#\mathcal{K}} - \frac{1}{\#\mathcal{K}}\right| = 0$$
Limitations of OTP

- **Key-length:** The key should be as long as the plaintext.
- **Getting true randomness:** The key should not be guessable from an attacker.
- **Perfect secrecy does not capture all possible attacks:** OTP is subject to two-time pad attacks given $m_1 \oplus k$ and $m_2 \oplus k$, we can compute $m_1 \oplus m_2 = (m_1 \oplus k) \oplus (m_2 \oplus k)$.

English has enough redundancy so that $m_1 \oplus m_2 \rightarrow m_1, m_2$.

- **OTP is malleable:** given the ciphertext $c = E(k, m)$ with $m = \text{to bob}$, it is possible to compute the ciphertext $c' = E(k, m')$ with $m' = \text{to eve}$: $c' := c \oplus "\text{to bob}: 00...00" \oplus "\text{to eve}: 00...00"$.

Limitations of OTP

▶ Key-length!
 ▶ The key should be as long as the plaintext.

▶ Getting true randomness!
 ▶ The key should not be guessable from an attacker.

▶ Perfect secrecy does not capture all possible attacks
 ▶ OTP is subject to two-time pad attacks given $m_1 \oplus k$ and $m_2 \oplus k$, we can compute $m_1 \oplus m_2 = (m_1 \oplus k) \oplus (m_2 \oplus k)$

 English has enough redundancy s.t. $m_1 \oplus m_2 \rightarrow m_1, m_2$

▶ OTP is malleable given the ciphertext $c = E(k, m)$ with $m =$ to bob: m_0, it is possible to compute the ciphertext $c' = E(k, m')$ with $m' =$ to eve: $m_0 : c' := c \oplus " to bob : 00 ... 00" \oplus " to eve : 00 ... 00"$
Limitations of OTP

- Key-length!
 - The key should be as long as the plaintext.

- Getting true randomness!
 - The key should not be guessable from an attacker.
Limitations of OTP

▶ Key-length!
 ▶ The key should be as long as the plaintext.

▶ Getting true randomness!
 ▶ The key should not be guessable from an attacker.

▶ Perfect secrecy does not capture all possible attacks
Limitations of OTP

- **Key-length!**
 - The key should be as long as the plaintext.

- **Getting true randomness!**
 - The key should not be guessable from an attacker.

- **Perfect secrecy does not capture all possible attacks**
 - **OTP is subject to two-time pad attacks**
 - given $m_1 \oplus k$ and $m_2 \oplus k$, we can compute
 - $m_1 \oplus m_2 = (m_1 \oplus k) \oplus (m_2 \oplus k)$
 - English has enough redundancy s.t. $m_1 \oplus m_2 \rightarrow m_1, m_2$
Limitations of OTP

- **Key-length!**
 - The key should be as long as the plaintext.

- **Getting true randomness!**
 - The key should not be guessable from an attacker.

- **Perfect secrecy does not capture all possible attacks**
 - OTP is subject to two-time pad attacks
 given $m_1 \oplus k$ and $m_2 \oplus k$, we can compute
 $m_1 \oplus m_2 = (m_1 \oplus k) \oplus (m_2 \oplus k)$
 English has enough redundancy s.t. $m_1 \oplus m_2 \rightarrow m_1, m_2$

 - OTP is malleable
 given the ciphertext $c = E(k, m)$ with $m = to\ bob : m_0$, it is possible to compute the ciphertext $c' = E(k, m')$ with $m' = to\ eve : m_0$
 $c' := c \oplus "to\ bob : 00\ldots00" \oplus "to\ eve : 00\ldots00"$
Stream ciphers

- Goal: make the OTP practical
Stream ciphers

- Goal: make the OTP practical
- Idea: use a pseudorandom key rather than a really random key
Stream ciphers

- Goal: make the OTP practical
- Idea: use a pseudorandom key rather than a really random key
 - The key will not really be random, but will look random
Stream ciphers

- Goal: make the OTP practical
- Idea: use a pseudorandom key rather than a really random key
 - The key will not really be random, but will look random
 - The key will be generated from a key seed using a Pseudo-Random Generator (PRG)
 \[G : \{0,1\}^s \rightarrow \{0,1\}^n \text{ with } s << n \]
Stream ciphers

- **Goal:** make the OTP practical
- **Idea:** use a pseudorandom key rather than a really random key
 - The key will not really be random, but will look random
 - The key will be generated from a key seed using a Pseudo-Random Generator (PRG)
 \[G : \{0, 1\}^s \rightarrow \{0, 1\}^n \text{ with } s << n \]
- Encryption using a PRG \(G \):
 \[E(k, m) = G(k) \oplus m \]
Stream ciphers

- Goal: make the OTP practical
- Idea: use a pseudorandom key rather than a really random key
 - The key will not really be random, but will look random
 - The key will be generated from a key seed using a Pseudo-Random Generator (PRG)
 \[G : \{0, 1\}^s \rightarrow \{0, 1\}^n \text{ with } s << n \]
- Encryption using a PRG \(G \): \(E(k, m) = G(k) \oplus m \)
- Decryption using a PRG \(G \): \(D(k, c) = G(k) \oplus c \)
Stream ciphers

- **Goal:** make the OTP practical
- **Idea:** use a pseudorandom key rather than a really random key
 - The key will not really be random, but will look random
 - The key will be generated from a key seed using a Pseudo-Random Generator (PRG)

 \[G : \{0,1\}^s \rightarrow \{0,1\}^n \text{ with } s \ll n \]

- Encryption using a PRG \(G \):
 \[E(k, m) = G(k) \oplus m \]

- Decryption using a PRG \(G \):
 \[D(k, c) = G(k) \oplus c \]

- **Stream ciphers are subject to two-time pad attacks**
Stream ciphers

- Goal: make the OTP practical
- Idea: use a pseudorandom key rather than a really random key
 - The key will not really be random, but will look random
 - The key will be generated from a key seed using a Pseudo-Random Generator (PRG)
 \[G : \{0, 1\}^s \rightarrow \{0, 1\}^n \text{ with } s << n \]
- Encryption using a PRG \(G \): \(E(k, m) = G(k) \oplus m \)
- Decryption using a PRG \(G \): \(D(k, c) = G(k) \oplus c \)
- Stream ciphers are subject to two-time pad attacks
- Stream ciphers are malleable
RC4

- Stream cipher invented by Ron Rivest in 1987

- Main data structure: array S of 256 bytes.

- Used in HTTPS and WEP

- Weaknesses of RC4:
 - first bytes are biased → drop the first to 256 generated bytes
 - subject to related keys attacks → choose randomly generated keys as seeds
RC4

- Stream cipher invented by Ron Rivest in 1987
- Consists of 2 phases:

 - Seed k with 2048 bits
 - Keystream generation with 1 byte per round

Main data structure: array S of 256 bytes.

-弱点 of RC4:
 - First bytes are biased → drop the first 256 generated bytes
 - Subject to related keys attacks → choose randomly generated keys as seeds
RC4

- Stream cipher invented by Ron Rivest in 1987
- Consists of 2 phases:
 - Initialisation
 - Keystream generation
- Main data structure: array S of 256 bytes.
RC4

- Stream cipher invented by Ron Rivest in 1987
- Consists of 2 phases:
 - seed k 2048 bits
 - keystream generation 1 byte per round
- Main data structure: array S of 256 bytes.
- Used in HTTPS and WEP

Weaknesses of RC4:
- First bytes are biased \rightarrow drop the first to 256 generated bytes
- Subject to related keys attacks \rightarrow choose randomly generated keys as seeds
RC4

- Stream cipher invented by Ron Rivest in 1987
- Consists of 2 phases:
 - Seed k: 2048 bits
 - Keystream generation: 1 byte per round

- Main data structure: array S of 256 bytes.
- Used in HTTPS and WEP
- Weaknesses of RC4:
 - First bytes are biased
 - Drop the first 256 generated bytes
 - Subject to related keys attacks
 - Choose randomly generated keys as seeds
RC4

- Stream cipher invented by Ron Rivest in 1987
- Consists of 2 phases:
 - *seed* k 2048 bits
 - *initialisation* → *keystream generation* 1 byte per round
- Main data structure: array S of 256 bytes.
- Used in HTTPS and WEP
- Weaknesses of RC4:
 - first bytes are biased → drop the first to 256 generated bytes
Stream cipher invented by Ron Rivest in 1987

Consists of 2 phases:

Main data structure: array S of 256 bytes.

Used in HTTPS and WEP

Weaknesses of RC4:

- first bytes are biased
 → drop the first to 256 generated bytes
- subject to related keys attacks
 → choose randomly generated keys as seeds
for $i := 0$ to 255 do
 $S[i] := i$
end

$j := 0$
for $i := 0$ to 255 do
 $j := (j + S[i] + K[i \mod |K|])(\mod 256)$
 swap($S[i], S[j]$)
end

$i := 0$

$j := 0$
while generatingOutput
 \(i := i + 1 \pmod{256} \)
 \(j := j + S[i] \pmod{256} \)
 \(\text{swap}(S[i], S[j]) \)
 \(\text{output}(S[S[i] + S[j] \pmod{256}]) \)
end
WEP uses RC4

Initialisation Vector (IV): 24-bits long string
Weaknesses of WEP

▶ two-time pad attack: IV is 24 bits long, so the key is reused after at most 2^{24} frames → use longer IVs

▶ Fluhrer, Mantin and Shamir (FMS) attack (related keys attack):
 - the keys only differ in the 24 bits IV
 - first bytes of key stream known because standard headers are always sent
 - for certain IVs knowing m bytes of key and keystream means you can deduce byte $m + 1$ of key
 → instead of using related IVs, generate IVs using a PRG
Weaknesses of WEP

- two-time pad attack: IV is 24 bits long, so the key is reused after at most 2^{24} frames
 \rightarrow use longer IVs
Weaknesses of WEP

- two-time pad attack: IV is 24 bits long, so the key is reused after at most 2^{24} frames
 → use longer IVs

- Fluhrer, Mantin and Shamir (FMS) attack (related keys attack):
 - the keys only differ in the 24 bits IV
 - first bytes of key stream known because standard headers are always sent
 - for certain IVs knowing m bytes of key and keystream means you can deduce byte $m + 1$ of key
 → instead of using related IVs, generate IVs using a PRG
Weaknesses of WEP

- two-time pad attack: IV is 24 bits long, so the key is reused after at most 2^{24} frames
 → use longer IVs

- Fluhrer, Mantin and Shamir (FMS) attack (related keys attack):
 - the keys only differ in the 24 bits IV
 - first bytes of key stream known because standard headers are always sent
 - for certain IVs knowing m bytes of key and keystream means you can deduce byte $m + 1$ of key
 → instead of using related IVs, generate IVs using a PRG
RC4 NOMORE crypto exploit used to decrypt user cookies in mere hours

Websites using RC4 encryption need to change their protocols as exploits using design flaws are now far easier to perform.

Linear Feedback Shift Registers (LFSRs)

- $K = \{0, 1\}$

- Main data structure: register R of s bits

- Initialisation: $R := k$

- Keystream generation: 1-bit output per round
 - taps: $i_1, i_2, ..., i_\ell$
 - feedback bit: $R[i_1] \oplus R[i_2] \oplus ... \oplus R[i_\ell]$
 - output bit: $R[s] + i_1 i_2 i_\ell$

- Broken LFSR-based stream ciphers:
 - DVD encryption: CSS (2 LFSRs)
 - GSM encryption: A5 (3 LFSRs)
 - Bluetooth encryption: E0 (4 LFSRs)
Linear Feedback Shift Registers (LFSRs)

▶ $\mathcal{K} = \{0, 1\}^s$
Linear Feedback Shift Registers (LFSRs)

- $\mathcal{K} = \{0, 1\}^s$
- Main data structure: register R of s bits
Linear Feedback Shift Registers (LFSRs)

- $\mathcal{K} = \{0, 1\}^s$
- Main data structure: register R of s bits
- Initialisation: $R := k$
Linear Feedback Shift Registers (LFSRs)

- $\mathcal{K} = \{0, 1\}^s$
- Main data structure: register R of s bits
- Initialisation: $R := k$
- Keystream generation: 1-bit output per round
 - taps: i_1, i_2, \ldots, i_ℓ
 - feedback bit: $R[i_1] \oplus R[i_2] \oplus \cdots \oplus R[i_\ell]$
 - output bit: $R[s]$

![Diagram of LFSR with taps i_1, i_2, i_ℓ, feedback bit, and output bit.](image)
Linear Feedback Shift Registers (LFSRs)

- $\mathcal{K} = \{0, 1\}^s$
- Main data structure: register R of s bits
- Initialisation: $R := k$
- Keystream generation: 1-bit output per round
 - taps: i_1, i_2, \ldots, i_ℓ
 - feedback bit: $R[i_1] \oplus R[i_2] \oplus \cdots \oplus R[i_\ell]$
 - output bit: $R[s]$

- Broken LFSR-based stream ciphers:
 - DVD encryption: CSS (2 LFSRs)
 - GSM encryption: A5 (3 LFSRs)
 - Bluetooth encryption: E0 (4 LFSRs)
Content Scrambling System (CSS) uses LFSRs
Content Scrambling System (CSS) uses LFSRs

$\mathcal{K} = \{0, 1\}^{40}$
Content Scrambling System (CSS) uses LFSRs

- $\mathcal{K} = \{0, 1\}^{40}$

- Data structures: 17-bits LFSR (R_{17}) and 25-bits LFSR (R_{25})
Content Scrambling System (CSS) uses LFSRs

- $\mathcal{K} = \{0, 1\}^{40}$
- Data structures: 17-bits LFSR (R_{17}) and 25-bits LFSR (R_{25})
- Initialisation: $R_{17} := 1 || K[0 - 15]$
 $R_{25} := 1 || K[16 - 39]$
Content Scrambling System (CSS) uses LFSRs

- $\mathcal{K} = \{0, 1\}^{40}$
- Data structures: 17-bits LFSR (R_{17}) and 25-bits LFSR (R_{25})
- Initialisation: $R_{17} := 1||K[0 – 15]$
 $R_{25} := 1||K[16 – 39]$
- Keystream generation: 1-byte output per round
Weaknesses in CSS

Can be broken in time 2^{17}. The idea of the attack is as follows:
Weaknesses in CSS

Can be broken in time 2^{17}. The idea of the attack is as follows:

> Because of structure of MPEG-2, first 20 bytes of plaintext are known
Weaknesses in CSS

Can be broken in time 2^{17}. The idea of the attack is as follows:

- Because of structure of MPEG-2, first 20 bytes of plaintext are known
- Hence also first 20 bytes of keystream are known
Weaknesses in CSS

Can be broken in time 2^{17}. The idea of the attack is as follows:

- Because of structure of MPEG-2, first 20 bytes of plaintext are known

- Hence also first 20 bytes of keystream are known

- Given output of 17 bit LFSR, can deduce output of 25 bit LFSR by subtraction
Weaknesses in CSS

Can be broken in time 2^{17}. The idea of the attack is as follows:

- Because of structure of MPEG-2, first 20 bytes of plaintext are known

- Hence also first 20 bytes of keystream are known

- Given output of 17 bit LFSR, can deduce output of 25 bit LFSR by subtraction

- Hence try all 2^{17} possibilities for 17 bit LFSR and if generated 25 bit LFSR produces observed keystream, cipher is cracked
All Android-created Bitcoin wallets vulnerable to theft

Android Java SecureRandom function flaw undermines security of Android wallets.

LEE HUTCHINSON - 8/12/2013, 3:15 PM

Bitcoin.org released a security advisory over the weekend warning the Bitcoin community that any Bitcoin wallet generated on any Android device is insecure and open to theft. The insecurity appears to stem from a flaw in the Android Java SecureRandom class, which under certain circumstances can
Project eStream: project to “identify new stream ciphers suitable for widespread adoption”, organised by the EU ECRYPT network

→ HC-128, Rabbit, Salsa20/12, SOSEMANUK, Grain v1, MICKEY 2.0, Trivium
Modern stream ciphers

Project eStream: project to “identify new stream ciphers suitable for widespread adoption”, organised by the EU ECRYPT network

→ HC-128, Rabbit, Salsa20/12, SOSEMANUK, Grain v1, MICKEY 2.0, Trivium

Conjecture

These eStream stream ciphers are “secure”
Concluding remarks

Perfect secrecy does not capture all possible attacks.

Theorem (Shannon 1949) Let \((E, D)\) be a cipher over \((M, C, K)\). If \((E, D)\) satisfies perfect secrecy, then the keys should be at least as long as the plaintexts \(|M| \leq |K|\).

Stream ciphers do not satisfy perfect secrecy because the keys in \(K\) are smaller than the messages in \(M\)

The design of crypto primitives is subtle and error prone.

Use standardised publicly known primitives.

Crypto primitives are secure under a precisely defined threat model.

Respect the security assumptions of the crypto primitives.

Many attacks due to poor implementations of cryptography.
Perfect secrecy does not capture all possible attacks.

\Rightarrow need for different security definition
Concluding remarks

- Perfect secrecy does not capture all possible attacks.
 \[\implies\text{need for different security definition}\]

- Theorem (Shannon 1949) Let \((E, D)\) be a cipher over \((M, C, K)\). If \((E, D)\) satisfies perfect secrecy, then the keys should be at least as long as the plaintexts \((|M| \leq |K|)\).
 \[\implies\text{Stream ciphers do not satisfy perfect secrecy because the keys in } K \text{ are smaller than the messages in } M\]
 \[\implies\text{need for different security definition}\]

- The design of crypto primitives is subtle and error prone.
 \[\implies\text{use standardised publicly know primitives}\]

- Crypto primitives are secure under a precisely defined threat model.
 \[\implies\text{respect the security assumptions of the crypto primitives}\]

- Many attacks due to poor implementations of cryptography
Concluding remarks

- Perfect secrecy does not capture all possible attacks.
 → need for different security definition

- Theorem (Shannon 1949) Let \((E, D)\) be a cipher over \((\mathcal{M}, \mathcal{C}, \mathcal{K})\). If \((E, D)\) satisfies perfect secrecy, then the keys should be at least as long as the plaintexts \((|\mathcal{M}| \leq |\mathcal{K}|)\).
 ⇒ Stream ciphers do not satisfy perfect secrecy because the keys in \(\mathcal{K}\) are smaller than the messages in \(\mathcal{M}\)
 → need for different security definition

- The design of crypto primitives is subtle and error prone.
 → use standardised publicly known primitives
Concluding remarks

- Perfect secrecy does not capture all possible attacks. → need for different security definition

- Theorem (Shannon 1949) Let \((E, D)\) be a cipher over \((\mathcal{M}, \mathcal{C}, \mathcal{K})\). If \((E, D)\) satisfies perfect secrecy, then the keys should be at least as long as the plaintexts \(|\mathcal{M}| \leq |\mathcal{K}|\).
 ⇒ Stream ciphers do not satisfy perfect secrecy because the keys in \(\mathcal{K}\) are smaller than the messages in \(\mathcal{M}\) → need for different security definition

- The design of crypto primitives is subtle and error prone. → use standardised publicly know primitives

- Crypto primitives are secure under a precisely defined threat model. → respect the security assumptions of the crypto primitives
Concluding remarks

- Perfect secrecy does not capture all possible attacks.
 ⇒ need for different security definition

- Theorem (Shannon 1949) Let (E, D) be a cipher over $(\mathcal{M}, \mathcal{C}, \mathcal{K})$. If (E, D) satisfies perfect secrecy, then the keys should be at least as long as the plaintexts ($|\mathcal{M}| \leq |\mathcal{K}|$).
 ⇒ Stream ciphers do not satisfy perfect secrecy because the keys in \mathcal{K} are smaller than the messages in \mathcal{M}
 ⇒ need for different security definition

- The design of crypto primitives is subtle and error prone.
 ⇒ use standardised publicly known primitives

- Crypto primitives are secure under a precisely defined threat model.
 ⇒ respect the security assumptions of the crypto primitives

- Many attacks due to poor implementations of cryptography