Cryptographic hash functions and MACs

Myrto Arapinis
School of Informatics
University of Edinburgh

October 11, 2016
Introduction

Encryption \Rightarrow confidentiality against eavesdropping

What about authenticity and integrity against an active attacker?

\rightarrow cryptographic hash functions and Message authentication codes

\rightarrow this lecture
Encryption \Rightarrow confidentiality against eavesdropping

What about authenticity and integrity against an active attacker?
\rightarrow cryptographic hash functions and Message authentication codes
\rightarrow this lecture
One-way functions (OWFs)

A OWF is a function that is easy to compute but hard to invert:

Definition (One-way)

A function f is a one-way function if for all x there is no efficient algorithm which given $f(x)$ can compute x
One-way functions (OWFs)

A OWF is a function that is easy to compute but hard to invert:

Definition (One-way)

A function f is a one-way function if for all x there is no efficient algorithm which given $f(x)$ can compute x.

Constant functions ARE OWF:

for any function $f(x) = c$ (c a constant) it is impossible to retrieve n from $f(n)$.
One-way functions (OWFs)

A OWF is a function that is easy to compute but hard to invert:

Definition (One-way)
A function f is a one-way function if for all x there is no efficient algorithm which given $f(x)$ can compute x

Constant functions ARE OWF:
for any function $f(x) = c$ (c a constant) it is impossible to retrieve n from $f(n)$

The successor function in \mathbb{N} IS NOT a OWF
given $\text{succ}(n)$ it is easy to retrieve $n = \text{succ}(n) - 1$
One-way functions (OWFs)

A OWF is a function that is easy to compute but hard to invert:

Definition (One-way)

A function f is a one-way function if for all x there is no efficient algorithm which given $f(x)$ can compute x

Constant functions ARE OWF:

for any function $f(x) = c$ (c a constant) it is impossible to retrieve n from $f(n)$

The successor function in \mathbb{N} IS NOT a OWF

given $\text{succ}(n)$ it is easy to retrieve $n = \text{succ}(n) - 1$

Multiplication of large primes IS a OWF:

integer factorization is a hard problem - given $p \times q$ (where p and q are primes) it is hard to retrieve p and q
Collision-resistant functions (CRFs)

A function is a CRF if it is hard to find two messages that get mapped to the same value threw this function.

Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm that can find two messages m_1 and m_2 such that $f(m_1) = f(m_2)$.

Constant functions ARE NOT CRFs.

The successor function in \mathbb{N} IS a CRF: the predecessor of a positive integer is unique.

Multiplication of large primes IS a CRF: every positive integer has a unique prime factorization.
Collision-resistant functions (CRFs)

A function is a CRF if it is hard to find two messages that get mapped to the same value threw this function

Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm that can find two messages m_1 and m_2 such that $f(m_1) = f(m_2)$

Constant functions ARE NOT CRFs
for all m_1 and m_2, $f(m_1) = f(m_2)$
Collision-resistant functions (CRFs)

A function is a CRF if it is hard to find two messages that get mapped to the same value though this function

Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm that can find two messages m_1 and m_2 such that $f(m_1) = f(m_2)$

Constant functions ARE NOT CRFs

for all m_1 and m_2, $f(m_1) = f(m_2)$

The successor function in \mathbb{N} IS a CRF

the predecessor of a positive integer is unique
Collision-resistant functions (CRFs)

A function is a CRF if it is hard to find two messages that get mapped to the same value threw this function

Definition (Collision resistance)
A function f is collision resistant if there is no efficient algorithm that can find two messages m_1 and m_2 such that $f(m_1) = f(m_2)$

Constant functions ARE NOT CRFs
for all m_1 and m_2, $f(m_1) = f(m_2)$

The successor function in \mathbb{N} IS a CRF
the predecessor of a positive integer is unique

Multiplication of large primes IS a CRF:
every positive integer has a unique prime factorization
Cryptographic hash functions

A cryptographic hash function takes messages of arbitrary length end returns a fixed-size bit string such that any change to the data will (with very high probability) change the corresponding hash value.

Definition (Cryptographic hash function)

A cryptographic hash function $H : \mathcal{M} \rightarrow \mathcal{T}$ is a function that satisfies the following 4 properties:

- $|\mathcal{M}| >> |\mathcal{T}|$
- it is easy to compute the hash value for any given message
- it is hard to retrieve a message from its hashed value (OWF)
- it is hard to find two different messages with the same hash value (CRF)

Examples: MD4, MD5, SHA-1, SHA-256, Whirlpool, ...
Cryptographic hash functions: applications

- **Commitments** - Allow a participant to commit to a value v by publishing the hash $H(v)$ of this value, but revealing v only later. Ex: electronic voting protocols, digital signatures, . . .

- **File integrity** - Hashes are sometimes posted along with files on "read-only" spaces to allow verification of integrity of the files. Ex: SHA-256 is used to authenticate Debian GNU/Linux software packages.

- **Password verification** - Instead of storing passwords in cleartext, only the hash digest of each password is stored. To authenticate a user, the password presented by the user is hashed and compared with the stored hash.

- **Key derivation** - Derive new keys or passwords from a single, secure key or password.

- **Building block of other crypto primitives** - Used to build MACs, block ciphers, PRG, . . .
Cryptographic hash functions: applications

- **Commitments** - Allow a participant to commit to a value \(v \) by publishing the hash \(H(v) \) of this value, but revealing \(v \) only later. Ex: electronic voting protocols, digital signatures, . . .

- **File integrity** - Hashes are sometimes posted along with files on “read-only” spaces to allow verification of integrity of the files. Ex: SHA-256 is used to authenticate Debian GNU/Linux software packages
Cryptographic hash functions: applications

- **Commitments** - Allow a participant to commit to a value v by publishing the hash $H(v)$ of this value, but revealing v only later. Ex: electronic voting protocols, digital signatures, . . .

- **File integrity** - Hashes are sometimes posted along with files on “read-only” spaces to allow verification of integrity of the files. Ex: SHA-256 is used to authenticate Debian GNU/Linux software packages

- **Password verification** - Instead of storing passwords in cleartext, only the hash digest of each password is stored. To authenticate a user, the password presented by the user is hashed and compared with the stored hash.
Cryptographic hash functions: applications

- **Commitments** - Allow a participant to commit to a value v by publishing the hash $H(v)$ of this value, but revealing v only later. Ex: electronic voting protocols, digital signatures, ...

- **File integrity** - Hashes are sometimes posted along with files on “read-only” spaces to allow verification of integrity of the files. Ex: SHA-256 is used to authenticate Debian GNU/Linux software packages

- **Password verification** - Instead of storing passwords in cleartext, only the hash digest of each password is stored. To authenticate a user, the password presented by the user is hashed and compared with the stored hash.

- **Key derivation** - Derive new keys or passwords from a single, secure key or password.
Cryptographic hash functions: applications

- **Commitments** - Allow a participant to commit to a value v by publishing the hash $H(v)$ of this value, but revealing v only later. Ex: electronic voting protocols, digital signatures, . . .

- **File integrity** - Hashes are sometimes posted along with files on “read-only” spaces to allow verification of integrity of the files. Ex: SHA-256 is used to authenticate Debian GNU/Linux software packages

- **Password verification** - Instead of storing passwords in cleartext, only the hash digest of each password is stored. To authenticate a user, the password presented by the user is hashed and compared with the stored hash.

- **Key derivation** - Derive new keys or passwords from a single, secure key or password.

- **Building block of other crypto primitives** - Used to build MACs, block ciphers, PRG, . . .
Collision resistance and the birthday attack

Theorem

Let $H : \mathcal{M} \rightarrow \{0, 1\}^n$ be a cryptographic hash function ($|\mathcal{M}| \gg 2^n$)

Generic algorithm to find a collision in time $O(2^{n/2})$ hashes:

1. Choose $2^{n/2}$ random messages in \mathcal{M}: $m_1, \ldots, m_{2^{n/2}}$
2. For $i = 1, \ldots, 2^{n/2}$ compute $t_i = H(m_i)$
3. If there exists a collision ($\exists i, j. \ t_i \neq t_j$) then return (t_i, t_j) else go back to 1

Birthday paradox Let $r_1, \ldots, r_n \in \{1, \ldots, N\}$ be independent variables. For $n = 1.2 \times \sqrt{N}$, $Pr(\exists i \neq j. \ r_i = r_j) \geq \frac{1}{2}$

\Rightarrow the expected number of iteration is 2
\Rightarrow running time $O(2^{n/2})$

\Rightarrow Cryptographic function used in new projects should have an output size $n \geq 256!$
The Merkle-Damgard construction

![Diagram showing the Merkle-Damgard construction]

- Compression function: $h : \mathcal{T} \times \mathcal{X} \to \mathcal{T}$
- PB: 1000...0∥mes-len (add extra block if needed)

Theorem

Let H be built using the MD construction to the compression function h. If H admits a collision, so does $h.

Example of MD constructions: MD5, SHA-1, SHA-2, ...
Compression functions from block ciphers

Let $E: \mathcal{K} \times \{0, 1\}^n \rightarrow \{0, 1\}^n$ be a block cipher
Let $E : \mathcal{K} \times \{0, 1\}^n \rightarrow \{0, 1\}^n$ be a block cipher
Let $E : \mathcal{K} \times \{0, 1\}^n \rightarrow \{0, 1\}^n$ be a block cipher.
Example of cryptographic hash function: SHA-256

- Structure: Merkle-Damgard
- Compression function: Davies-Meyer
- Block cipher: SHACAL-2
Message Authentication Codes (MACs)

Myrto Arapinis
School of Informatics
University of Edinburgh

October 11, 2016
Goal: message integrity

Generate tag:
$t ← \text{MDC}(m)$

Verify tag:
$V(m, t) = \text{“yes”}$?
Goal: message integrity

Alice

Generate tag

\[t \leftarrow S(k, m) \]

Verify tag

\[V(k, m, t) = \text{“yes”} \]?

Bob

A MAC is a pair of algorithms \((S, V)\) defined over \((\mathcal{K}, \mathcal{M}, \mathcal{T})\):

\begin{itemize}
 \item \(S : \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{T} \)
 \item \(V : \mathcal{K} \times \mathcal{M} \times \mathcal{T} \rightarrow \{\top, \bot\} \)
 \item Consistency: \(V(k, m, S(k, m)) = T \)
\end{itemize}

and such that

\begin{itemize}
 \item It is hard to compute a valid pair \((m, S(k, m))\) without knowing \(k\)
At installation time

$t_1 = S(k, F_1)$
$t_2 = S(k, F_2)$
$t_n = S(k, F_n)$

k derived from user password

To check for virus file tampering/alteration:

- reboot to clean OS
- supply password
- any file modification will be detected
Block ciphers and message integrity

Let (E, D) be a block cipher. We build a MAC (S, V) using (E, D) as follows:

$S(k, m) = E(k, m)$

$V(k, m, t) = \text{if } m = D(k, t) \text{ then return } \top \text{ else return } \bot$

But: block ciphers can usually process only 128 or 256 bits.
Our goal now: construct MACs for long messages.
Let \((E, D)\) be a block cipher. We build a MAC \((S, V)\) using \((E, D)\) as follows:

- \(S(k, m) = E(k, m)\)
- \(V(k, m, t) = \begin{cases} \top & \text{if } m = D(k, t) \\ \bot & \text{otherwise} \end{cases}\)
Let \((E, D)\) be a block cipher. We build a MAC \((S, V)\) using \((E, D)\) as follows:

\[
\begin{align*}
S(k, m) &= E(k, m) \\
V(k, m, t) &= \text{if } m = D(k, t) \\
&\quad \text{then return } \top \\
&\quad \text{else return } \bot
\end{align*}
\]

But: block ciphers can usually process only 128 or 256 bits
Block ciphers and message integrity

Let \((E, D)\) be a block cipher. We build a MAC \((S, V)\) using \((E, D)\) as follows:

\[
\begin{align*}
S(k, m) &= E(k, m) \\
V(k, m, t) &= \text{if } m = D(k, t) \\
&\quad \text{then return } \top \\
&\quad \text{else return } \bot
\end{align*}
\]

But: block ciphers can usually process only 128 or 256 bits

Our goal now: construct MACs for long messages
ECBC-MAC

$E(K_1, \cdot) + E(K_1, \cdot) + E(K_1, \cdot) + E(K_1, \cdot) + E(K_2, \cdot) \rightarrow t$

$E : \mathcal{K} \times \{0, 1\}^n \rightarrow \{0, 1\}^n$ a block cipher

$ECBC-MAC : \mathcal{K}^2 \times \{0, 1\}^* \rightarrow \{0, 1\}^n$

→ the last encryption is crucial to avoid forgeries!!

Ex: 802.11i uses AES based ECBC-MAC

(details on the board)
PMAC

$E(K_1, \cdot) + E(K_1, \cdot) + E(K_1, \cdot) + E(K_1, \cdot) \rightarrow t$

- $E: \mathcal{K} \times \{0, 1\}^n \rightarrow \{0, 1\}^n$ a block cipher
- $P: \mathcal{K} \times \mathbb{N} \rightarrow \{0, 1\}^n$ any easy to compute function
- $PMAC: \mathcal{K}^2 \times \{0, 1\}^* \rightarrow \{0, 1\}^n$
HMAC

MAC built from cryptographic hash functions

\[HMAC(k, m) = H(k \oplus OP || H(k \oplus IP || m)) \]

IP, OP: publicly known padding constants

Ex: SSL, IPsec, SSH, ...
Authenticated encryption

Myrto Arapinis
School of Informatics
University of Edinburgh

October 11, 2016
Plain encryption is malleable

Goal
Simultaneously provide data confidentiality, integrity and authenticity
⇝ decryption combined with integrity verification in one step

- The decryption algorithm never fails
- Changing one bit of the i^{th} block of the ciphertext
 - CBC decryption: will affect last blocks after the i^{th} of the plaintext
 - ECB decryption: will only the i^{th} block of the plaintext
 - CTR decryption: will only affect one bit of the i^{th} block of the plaintext

Decryption should fail if a ciphertext was not computed using the key
Encrypt-then-MAC

1. Always compute the MACs on the ciphertext, never on the plaintext
2. Use two different keys, one for encryption and one for the MAC

Encryption

1. \(C \leftarrow E_{AES}(K_1, M) \)
2. \(T \leftarrow HMAC-SHA(K_2, C) \)
3. return \(C \| T \)

Decryption

1. if \(T = HMAC - SHA(K_2, C) \)
2. then return \(D_{AES}(K_1, C) \)
3. else return \(\perp \)

Do not:

- Encrypt-then-MAC
- Encrypt-and-MAC