
Computer Security - Tutorial Sheet 2 - Solution

Network & Programming Security

Daniel Franzen

15th February 2016

Part A: Web Application Firewall

This question was partly inspired by the story of what happened to HB Garry
Federal in 2011 (Google turns up plenty of news articles or see the Wikipedia
page for a summary).

Here are some brief notes on the answers.

1. A Web Application Firewall operates at the Level 7, the Application layer
of the OSI model. The client specification stated that they needed it to
parse HTML which can only be parsed at this layer. An advantage to
running a firewall at this layer is that it can look at the whole content of
the communication and modify before sending it on. A disadvantage is
that running at this layer takes more time and is slower. A firewall which
only has to parse the IP address can operate much faster as it can do this
per-packet without needing to maintain state.

2. The HTTP protocol can be usefully restricted in many ways:

• Check protocol conformance e.g. validating content or character en-
codings

• limits size of request URI, query length

• limit names or values of cookies

• limit the number and size of headers

• restrict use of POST and PUT or their transfer sizes

Although a web server may allow configuration to restrict the HTTP pro-
tocol, configuring the restrictions in the WAF would allow the restrictions
to be uniform and invariant across multiple web servers (it is mentioned
that GBHarry is running at least two web apps), different web server ver-
sion variations, etc. It also allows separation of security configuration from
function hence better visibility of restrictions as they are gathered in one
place.

3. Input normalisation allows the WAF to normalise URLs, character set
encodings, HTML entities, backslashes and the like. The reason is that
pattern detectors then only need to work on the normalised patterns rather
than any mix of formats, so they can be simpler and more efficient.

4. Negative policies are based on ruling out bad patterns, e.g., suspicious
URLs, IPs known to be launch sites of attacks, etc. Postivie policies
are based on only allowing traffic which fits the format specified by the
application. The situation here is similar to that of anti-virus tools or
intrusion detection systems.

Some obvious points are:

1

• Disadvantages of negative policies: Have to be updated frequently or
connect to online blacklists. The set of rules tends to grow over time
and can become costly to check.

• Advantages of negative policies: Ease of configuration.

• Disadvantages of positive policies: It could be very complicated to
configure valid patterns for a sophisticated web application (an au-
tomatic learning based approach might be required). Any version
updates are quite likely to change patterns significantly.

• Advantages of positive policies: Greater accuracy.

5. Possible responses by the WAF:

• Router: Dropping a connection or blocking an IP address. Appro-
priate for a connection that has just been used to upload an attack
vector, or an IP address which is connecting too frequently (DoS
signature).

• WAF: It might do rate-limiting

• Application: An example is disabling a user account if spam content
is detected by the WAF.

6. The obvious missing feature categories are:

• Configuration: The WAF should provide usable configuration mech-
anisms, perhaps out-of-the-box for commodity web applications, or
automatically by providing a training phase.

• Monitoring: There should be a way for the WAF to raise an alarm in
case a serious attack is detected, and at the least, it should provide
a mechanism to monitor its status.

• Logging: The WAF should record audit logs of its activity, and per-
haps of the validated web app traffic.

7. Some prudent considerations when deploying a WAF would be:

• Cost of configuration and maintenance (likely to exceed purchase
price of tool and hardware);

• Additional risk, single point of failure: the WAF itself becomes a
focus of attacks, and, especially if it implements security features
like SSL encryption and authentication, may become a critical point
of failure.

• Performance overhead: the WAF may slow access to the web site.

The final decision might consider budgets and a risk assessment (how much
business is lost by a security company that can’t secure it’s own website?)
and they should certainly consider alternative solutions, perhaps such as
using third-party cloud-hosted or externally managed applications.

2

Part B: Secure Programming

Question 3: Secure Programming

1. In class DBConnect(): A hard-coded database server IP address
in a constant string
A malicious user can use the javap -c DBConnect command to disassemble
the class and discover the hard-coded server IP address. The output of
the disassembler reveals the server IP address 172.16.254.1 in clear text.
The solution retrieves the server url and the connection string from an
external file located in a secure directory. Exposure is further limited by
clearing the url from memory immediately after use. Note that the con-
nection is still vulnerable to package sniffing, so additional authentication
and encryption mechanisms have to be used.

1 private String Connect() {
try{

3 char[] url = new char[100];
BufferedReader br = new BufferedReader(new InputStreamReader(

5 new FileInputStream("serveripaddress.txt")));
// Reads the DB url into the char array,

7 // Validate the url
...

9 conn = DriverManager.getConnection (url);
...

11 // Manually clear out the url
// immediately after use

13 for (int i = n - 1; i >= 0; i--) {
url[i] = 0;

15 }
br.close();

17 } catch(SQLException ex) {...}
}

2. In class UserManagement, loginCheck(): No input validation: log in-
jection attack
The example code logs the user’s login name when an invalid request is
received. No input sanitization is performed. An unsanitised input could
lead to a log injection attack. A standard log message when username is
alice might look like this:

20 Feb 2012, 1:14:30 PM java.util.logging.LogManager$RootLogger
log

2 SEVERE: User login failed for: alice

If the username that is used in a log message was not david, but rather a
multiline string like this:

alice
2 20 Feb 2012, 1:16:45 PM java.util.logging.LogManager$RootLogger

log
SEVERE: User login succeeded for: administrator

3

The log would contain the following misleading data:

1 20 Feb 2012, 1:16:45 PM java.util.logging.LogManager$RootLogger
log

SEVERE: User login failed for: alice
3 May 15, 2011 2:25:52 PM java.util.logging.LogManager log

SEVERE: User login succeeded for: administrator

Perform input sanitization: Validate the username input before logging it
to prevent log injection attacks

private void loginCheck (String username,
2 String passwordHash) throws IOException {

bool loginSuccessful = checkCredentialsValidity(username,
passwordHash);

4 if (!Pattern.matches("[A-Za-z0-9_]+", username)) {
// Unsanitised username

6 logger.severe("User login failed for unauthorized user");
// no access ..

8 }
else if (loginSuccessful) {

10 logger.severe("User login succeeded for: " + username);
/* the user is directed to her/his own pages */ ...

12 } else {
logger.severe("User login failed for: " + username);

14 /* restricted access to public pages */ ...
}

16 }

3. In class UserManagement, resetPassword(): Generate weak random
numbers
This code uses the insecure java.util.Random class. This class produces
an identical sequence of numbers for each given seed value (123). Conse-
quently, the sequence of numbers is predictable. An attacker could find
the vulnerability by generating more than one new user. It is not very
hard for an attacker to access/guess usernames of the existing users. Using
identical password, the attacker can login in as existing users and access
the user profiles, sensitive info e.g. credit card info.
Use the java.security.SecureRandom class to produce high-quality random
numbers:

import java.security.SecureRandom;
2 import java.security.NoSuchAlgorithmException;
// ...

4 private void resetPassword (String newPass){
try {

6 SecureRandom number = SecureRandom.getInstance("SHA1PRNG");
Character c;

8 newPass = null;
for (int i = 0; i < 9; i++) {

10 // Generate another random integer in the range of [0, 255]

4

int n = number.nextInt(256);
12 c = (char) n;

newPass = newPass + c.toString() ;
14 }

} catch (NoSuchAlgorithmException nsae) {
16 // Forward to handler

}
18 }

4. In class Purchase, getDate():Returning private mutable class mem-
ber’s reference
An untrusted caller can manipulate a private Date object because return-
ing the reference exposes the internal mutable component beyond the trust
boundaries of class Purchase. This solution returns a clone of the Date ob-
ject from the getDate() accessor method. While Date can be extended by
an attacker, this is safe because the Date object returned by getDate() is
controlled by class Purchase and is known to be a non-malicious subclass.

public Date getDate() {
2 return (Date)d.clone();

}

5. In class Purchase, createXMLQuery: Input validation vulnerability;
XML injection
A malicious user might input the following string instead of a simple num-
ber in the quantity field.

1 1</quantity><price>1.0</price><quantity>1

So the result query would be:

1 <item>
<description>Widget</description>

3 <price>500.0</price>
<quantity>1</quantity><price>1.0</price><quantity>1</quantity>

5 </item>

Even when it is not possible to perform such an attack, the attacker may
be able to inject special characters, such as comment blocks and CDATA
delimiters, which corrupt the meaning of the XML. Depending on the
specific data and command interpreter or parser to which data is being
sent, appropriate methods must be used to sanitize untrusted user input.
This compliant solution uses whitelisting to sanitize the input. In this
compliant solution, the method requires that the quantity field must be a
number between 0 and 9.

1 private void createXMLQuery(BufferedOutputStream outStream,
String quantity) throws IOException {

5

3 /* Write XML string if quantity contains numbers only.
Blacklisting of invalid characters can be performed

5 in conjunction.*/
if (!Pattern.matches("[0-9]+", quantity)) {

7 // Format violation
}

9 String xmlString = "<item>\n<description>Widget</description>\n
" +

"<price>500</price>\n" +
11 "<quantity>" + quantity + "</quantity></item>

";
outStream.write(xmlString.getBytes());

13 outStream.flush();
}

A more general mechanism for checking XML for attempted injection is
to validate it using a Document Type Definition (DTD) or schema. The
schema must be rigidly defined to prevent injections from being mistaken
for valid XML.

6. In class Inventory, checkInventory: Memory leak
The vector object in the code example leaks memory. The condition for
removing the vector element is mistakenly written as n > 0 instead of
n >= 0. Consequently, the method fails to remove one element per invo-
cation and quickly exhausts the available heap space. This can be fixed
easily by changing the second loop condition to n >= 0.

public void checkInventory(int count) {
2 for (int n = 0; n < count; n++) {

vector.add(Integer.toString(n));
4 }

// ckeck any mismatch in the inventory list
6 checkMismatch();

...
8 for (int n = count - 1; n >= 0; n--) { // Free the memory

vector.removeElementAt(n);
10 }

}

Part C: Access Control

1. This kind of security hierarchy can be represented in a lattice:

(a) The security levels are all nodes in the lattice. The security lattice s
as follows:

6

(b) The observer is watching. That means he needs to be on the level
(T, {CS}) ∨ (S, {CS}) which is (E, {CS}).

(c) In this case write access is needed, thus the level needs to be
(T, {CS}) ∧ (E, {CT}). Here this is (S, {}).

(d) A partial order is a reflexive, transitive and anti-symmetric binary
relation.
The reflexivity A ≤ A is needed so that every subject can read and
write the objects on her security level.
Transitivity requires that if A ≤ B and B ≤ C then A ≤ C; that is,
if indirect information flow is possible from A to C via B, then we
should allow direct information flow from A to C.
Anti-symmetry requires that if A ≤ B and B ≤ A, then A =
B. Given the reflexive and transitive requirements, anti-symmetry
merely eliminates redundant security classes. In other words there is
no point in having two different security labels if objects with these
labels are restricted to having exactly the same information flows.

2.

Exercise 1.2 Last tutorial Exam ideas
Bob {read,write} {write} {write}
Luke {read} {read,write} {write}
David {read} {read} {read,write}

3. • One of the student threads get very controversial about a method
presented in the lecture and Luke (a tutor) as well as Dave (an ex-
aminer) have to interfere. The Bell-LaPadula Model allows them to

7

temporary adjust their security level to be allowed to answer to this
thread.

b = [(David, Problem− Thread,write), (1)

(David, Problem− Thread, read), (2)

(Luke, Problem− Thread,write), (3)

(Luke, Problem− Thread, read), (4)

(Bob, Problem− Thread,write), (5)

(Bob, Problem− Thread, read)] (6)

• Access Matrix:
M =

Ex. 1.2 Last tut. Exam Problem-Thread
Bob {read,write} {write} {write} {read,write}
Luke {read,write} {write} {write} {read,write}
David {read,write} {write} {write} {read,write}

• Current security levels for Subjects

LC = [Bob 7→ (Student, {CS})],
Luke 7→ (Student, {CS})],
Divid 7→ (Student, {CS})]

Maximal security levels for Subjects

LS = [Bob 7→ (Student, {CS}),
Luke 7→ (Tutor, {CS}),
David 7→ (Examiner, {CS})]

Security levels for Objects

LO = [Ex.1.2 7→ (Student, {CS})
Lasttut. 7→ (Tutor, {CS})
Exam 7→ (Examiner, {CS})
Problem− Thread 7→ (Student, {CS})]

In order to say whether this transition is safe we have to evaluate, whether
both states are safe. That means validating the ss-property, the ?-property
and the DS-property.
The implicit represented start state is safe: All subject have their max-
imum clearance, everybody is only writing at his own level, nobody is
appending-down or reading-up (→ ss-property, ?-property). The permis-
sion matrix is accordingly (DS-property).

8

In the new state we adjusted the permission matrix to match the secu-
rity needs (DS-property) and all operations are only on one thread (→
ss-property, ?-property).
Thus the transition is safe.

9

