Stream ciphers

Myrto Arapinis
School of Informatics
University of Edinburgh

February 29, 2015

16



The One-Time Pad (OTP)



The One-Time Pad (OTP)

» M =C =K = {0,1}"



The One-Time Pad (OTP)

» M =C =K = {0,1}"
» Encryption: Vk € K. Vme M. E(k,m)=k® m



The One-Time Pad (OTP)

» M =C =K = {0,1}"

» Encryption: Vk € K. Vme M. E(k,m)=k® m
k =01101001
m = 10001011

c =11100010

2/16



The One-Time Pad (OTP)

» M =C =K = {0,1}"

» Encryption: Vk € K. Vme M. E(k,m)=k® m
k =01101001
m = 10001011

c =11100010

» Decryption: Yk € K. Vc e C. D(k,c)=k®c

2/16



The One-Time Pad (OTP)

» M =C =K = {0,1}"

» Encryption: Vk € K. Vme M. E(k,m)=k® m
k =01101001
= 10001011

c =11100010

» Decryption: Yk € K. Vc e C. D(k,c)=k®c
k = 0110
= 1110

0
c 0

= O

1 1
0 0

m = 100201011

2/16



The One-Time Pad (OTP)

» M =C =K = {0,1}"

» Encryption: Vk € K. Vme M. E(k,m)=k® m
k =01101001
= 10001011

c =11100010

» Decryption: Yk € K. Vc e C. D(k,c)=k®c
k = 0110
c =1110

0
0

= O

1 1
0 0

m = 100201011

» Consistency: D(k,E(k,m))=k& (kd& m)=m

2/16



Perfect secrecy

Definition
A cipher (E, D) over (M,C, K) satisfies perfect secrecy if for all
messages my, my € M of same length (|m1| = |mz]), and for all

ciphertexts ¢ € C
|Pr(E(k,m1) =c)— Pr(E(k,my) =c)| <e

where k <~ K and € is some “negligible quantity”.



OTP satisfies perfect secrecy

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy



OTP satisfies perfect secrecy

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages m € M and all
ciphertexts ¢ € C

Pr(E(k,m) = c)

where k < K.

4/16



OTP satisfies perfect secrecy

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages m € M and all
ciphertexts ¢ € C

Pr(E(k,m)=c) = #kek om=c}

where k < K.



OTP satisfies perfect secrecy

Theorem (Shannon 1949) J

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages m € M and all
ciphertexts ¢ € C

Pr(E(k,m)=c) = #kek om=c}
#{kEK: k=m&c}
#K

where k < K.



OTP satisfies perfect secrecy

Theorem (Shannon 1949) J

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages m € M and all
ciphertexts ¢ € C

Pr(E(k,m)=c) = #kek om=c}
#{kEK: k=m&c}
#K
1
= X

where k < K.



OTP satisfies perfect secrecy

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages m € M and all
ciphertexts ¢ € C

keK: kdm=
Pr(E(k,m)=c¢c) = #{kek: km=c} % m=c}
#{keK: k=mdc}
#IK

_ 1

= @x
where k < K.
Thus, for all messages my, my € M, and for all ciphertexts c € C

|Pr(E(k,my) =c)— Pr(E(k,mp) =¢)| <

4/16



OTP satisfies perfect secrecy

Theorem (Shannon 1949) J

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages m € M and all
ciphertexts ¢ € C

keK: kdm=
Pr(E(k,m)=c¢c) = #{kek: km=c} % m=c}
#{keK: k=mdc}
#IK

_ 1

= @x
where k < K.
Thus, for all messages my, my € M, and for all ciphertexts c € C

|Pr(E(k, m) = ¢) = Pr(E(k, m2) = '#/C #|

4/16



Limitations of OTP



Limitations of OTP

» Key-length!
» The key should be as long as the plaintext.

5/16



Limitations of OTP

» Key-length!
» The key should be as long as the plaintext.

» Getting true randomness!
» The key should not be guessable from an attacker.

5/16



Limitations of OTP

» Key-length!
» The key should be as long as the plaintext.

» Getting true randomness!
» The key should not be guessable from an attacker.

» Perfect secrecy does not capture all possible attacks

5/16



Limitations of OTP

» Key-length!
» The key should be as long as the plaintext.

» Getting true randomness!
» The key should not be guessable from an attacker.

» Perfect secrecy does not capture all possible attacks
» OTP is subject to two-time pad attacks
given my @ k and my & k, we can compute
English has enough redundancy s.t. m; & my — my, my

5/16



Limitations of OTP

» Key-length!

» The key should be as long as the plaintext.

» Getting true randomness!

» The key should not be guessable from an attacker.

» Perfect secrecy does not capture all possible attacks

» OTP is subject to two-time pad attacks
given my @ k and my & k, we can compute
ml@m2:(m1()k)®(m2©k)

English has enough redundancy s.t. m; & my — my, my

» OTP is malleable

given the ciphertext ¢ = E(k, m) with m = to bob : my, it is
possible to compute the ciphertext ¢’ = E(k, m’) with

m
/.

C

/

to eve : mg
c®"to bob:00...00" & "to eve:00...00"

5/16



Stream ciphers

» Goal: make the OTP practical

6/16



Stream ciphers

» Goal: make the OTP practical

» Idea: use a pseudorandom key rather than a really random key

6/16



Stream ciphers

» Goal: make the OTP practical

» Idea: use a pseudorandom key rather than a really random key

» The key will not really be random, but will look random

6/16



Stream ciphers

» Goal: make the OTP practical

» Idea: use a pseudorandom key rather than a really random key

» The key will not really be random, but will look random
» The key will be generated from a key seed using a
Pseudo-Random Generator (PRG)
G: {0,1}* — {0,1}" with s << n

6/16



Stream ciphers

» Goal: make the OTP practical

» Idea: use a pseudorandom key rather than a really random key

» The key will not really be random, but will look random
» The key will be generated from a key seed using a
Pseudo-Random Generator (PRG)

G: {0,1}* — {0,1}" with s << n

» Encryption using a PRG G: E(k,m) = G(k) & m

6/16



Stream ciphers

» Goal: make the OTP practical

» Idea: use a pseudorandom key rather than a really random key

» The key will not really be random, but will look random
» The key will be generated from a key seed using a
Pseudo-Random Generator (PRG)
G: {0,1}* — {0,1}" with s << n
» Encryption using a PRG G: E(k,m) = G(k)® m

» Decryption using a PRG G: D(k,c) = G(k)® ¢

6/16



Stream ciphers

» Goal: make the OTP practical

» Idea: use a pseudorandom key rather than a really random key

» The key will not really be random, but will look random
» The key will be generated from a key seed using a
Pseudo-Random Generator (PRG)
G: {0,1}* — {0,1}" with s << n

v

Encryption using a PRG G: E(k,m) = G(k) & m

v

Decryption using a PRG G: D(k,c) = G(k)® ¢

v

Stream ciphers are subject to two-time pad attacks

6/16



Stream ciphers

» Goal: make the OTP practical

» Idea: use a pseudorandom key rather than a really random key

» The key will not really be random, but will look random
» The key will be generated from a key seed using a
Pseudo-Random Generator (PRG)
G: {0,1}* — {0,1}" with s << n

v

Encryption using a PRG G: E(k,m) = G(k) & m

v

Decryption using a PRG G: D(k,c) = G(k)® ¢

v

Stream ciphers are subject to two-time pad attacks

v

Stream ciphers are malleable

6/16



RC4

» Stream cipher invented by Ron Rivest in 1987



RC4
» Stream cipher invented by Ron Rivest in 1987

» Consists of 2 phases:

seed 2048 bits
k
:: 1 byte per
D <§ %; round
\ Y ) \ Y )
initialisation keystream generation

7/16



RC4
» Stream cipher invented by Ron Rivest in 1987

» Consists of 2 phases:

seed 2048 bits
k
:: 1 byte per
D <§ %; round
\ Y ) \ Y )
initialisation keystream generation

» Main data structure: array S of 256 bytes.

7/16



RC4
» Stream cipher invented by Ron Rivest in 1987

» Consists of 2 phases:

seed 2048 bits
k
:: 1 byte per
D <§ %; round
\ Y ) \ Y )
initialisation keystream generation

» Main data structure: array S of 256 bytes.

» Used in HTTPS and WEP

7/16



RC4

» Stream cipher invented by Ron Rivest in 1987

» Consists of 2 phases:
seed 2048 bits
k
:: 1 byte per
D <§ %; round
\ Y ) \ Y )
initialisation keystream generation

v

Main data structure: array S of 256 bytes.

Used in HTTPS and WEP
Weaknesses of RC4:

v

v

7/16



RC4

» Stream cipher invented by Ron Rivest in 1987

» Consists of 2 phases:
seed 2048 bits
k
:: 1 byte per
D <§ %; round
\ Y ) \ Y )
initialisation keystream generation

v

Main data structure: array S of 256 bytes.

Used in HTTPS and WEP

Weaknesses of RC4:

» first bytes are biased
— drop the first to 256 generated bytes

v

v

7/16



RC4

» Stream cipher invented by Ron Rivest in 1987

v

Consists of 2 phases:

seed 2048 bits

k
:: 1 byte per
U < g %; round

\ ) L J

T T
initialisation keystream generation

v

Main data structure: array S of 256 bytes.
Used in HTTPS and WEP
Weaknesses of RC4:

» first bytes are biased
— drop the first to 256 generated bytes
» subject to related keys attacks
— choose randomly generated keys as seeds

v

v



RC4: initialisation

for i :=0 to 255 do
S[i] =i

end

j:=0

for i :=0 to 255 do
J =+ S[i]+ K[i(mod |K|)])(mod 256)
swap(S[i], Sj])

end

i:=0

j:=0

8/16



RC4: key stream generation

while generatingOutput
i =i+ 1(mod 256)
J:=j+ S[i](mod 256)
swap(S[i], SU])
output(S[S[i] + S[j](mod 256)])

end

9/16



WEP uses RC4

Q_
| |
k
| v

Initialisation Vector (1V): 24-bits long string

|
E

10/16



Weaknesses of WEP

11/16



Weaknesses of WEP

» two-time pad attack: IV is 24 bits long, so the key is reused
after at most 224 frames
— use longer Vs

11/16



Weaknesses of WEP

» two-time pad attack: IV is 24 bits long, so the key is reused
after at most 224 frames
— use longer Vs

» Fluhrer, Mantin and Shamir (FMS) attack (related keys
attack):
- the keys only differ in the 24 bits IV
- first bytes of key stream known because standard headers
are always sent
- for certain IVs knowing m bytes of key and keystream means

you can deduce byte m + 1 of key
— instead of using related Vs, generate Vs using a PRG

11/16



Weaknesses of WEP

» two-time pad attack: IV is 24 bits long, so the key is reused
after at most 224 frames
— use longer Vs

» Fluhrer, Mantin and Shamir (FMS) attack (related keys
attack):
- the keys only differ in the 24 bits IV
- first bytes of key stream known because standard headers
are always sent
- for certain IVs knowing m bytes of key and keystream means

you can deduce byte m + 1 of key
— instead of using related Vs, generate Vs using a PRG

Remark

The FMS attack does not apply to RC4-based SSL (TLS), since
SSL generates the encryption keys it uses for RC4 by hashing,
meaning that different SSL sessions have unrelated keys

11/16



Linear Feedback Shift Registers (LFSRs)



Linear Feedback Shift Registers (LFSRs)

» £={0,1}°



Linear Feedback Shift Registers (LFSRs)

» £={0,1}°
» Main data structure: register R of s bits



Linear Feedback Shift Registers (LFSRs)

» £={0,1}°
» Main data structure: register R of s bits
» Initialisation: R := k



Linear Feedback Shift Registers (LFSRs)

» £={0,1}°

» Main data structure: register R of s bits

» Initialisation: R := k

» Keystream generation: 1-bit output per round
taps: n,2,...1p
feedback bit: R[i1] & R[i2] & - -- & R[if]
output bit: R[s]

output bit
S [T 1-°*

I P) Iy

feedback bit

12 /16



Linear Feedback Shift Registers (LFSRs)

» £={0,1}°
» Main data structure: register R of s bits
» Initialisation: R := k

» Keystream generation: 1-bit output per round

taps: i1, 02, ... 1p
feedback bit: R[i1] & R[i2] & - -- & R[if]
output bit: R[s]

output bit
S [T 1-°*

I P) Iy

feedback bit

» Broken LFSR-based stream ciphers:

» DVD encryption: CSS (2 LFSRs)
» GSM encryption: A5 (3 LFSRs)
» Bluetooth encryption: EO (4 LFSRs)

12 /16



Content Scrambling System (CSS) uses LFSRs



Content Scrambling System (CSS) uses LFSRs

» K ={0,1}*



Content Scrambling System (CSS) uses LFSRs

» K ={0,1}*

» Data structures: 17-bits LFSR (R;7) and 25-bits LFSR (R2s)

13 /16



Content Scrambling System (CSS) uses LFSRs

» K ={0,1}*
» Data structures: 17-bits LFSR (R;7) and 25-bits LFSR (R2s)

» Initialisation: Ry7 := 1||K[0 — 15]
Ros := 1||K[16 — 39]

13 /16



Content Scrambling System (CSS) uses LFSRs

» K ={0,1}*
» Data structures: 17-bits LFSR (R;7) and 25-bits LFSR (R2s)

» Initialisation: Ry7 := 1||K[0 — 15]
Rps = 1||K[16 — 39]

» Keystream generation: 1-byte output per round

1 byte

| 17-bit LFSR_ 1

Sty ML

carry-out from
previous round

carry-out

13 /16



Weaknesses in CSS

Can be broken in time 217, The idea of the attack is as follows:

14 /16



Weaknesses in CSS

Can be broken in time 217, The idea of the attack is as follows:

» Because of structure of MPEG-2, first 20 bytes of plaintext
are known

14 /16



Weaknesses in CSS

Can be broken in time 217, The idea of the attack is as follows:

» Because of structure of MPEG-2, first 20 bytes of plaintext
are known

» Hence also first 20 bytes of keystream are known

14 /16



Weaknesses in CSS

Can be broken in time 217, The idea of the attack is as follows:

» Because of structure of MPEG-2, first 20 bytes of plaintext
are known

» Hence also first 20 bytes of keystream are known

» Given output of 17 bit LFSR, can deduce output of 25 bit
LFSR by subtraction

14 /16



Weaknesses in CSS

Can be broken in time 217. The idea of the attack is as follows:

» Because of structure of MPEG-2, first 20 bytes of plaintext
are known

» Hence also first 20 bytes of keystream are known

» Given output of 17 bit LFSR, can deduce output of 25 bit
LFSR by subtraction

» Hence try all 217 possibilities for 17 bit LFSR and if generated
25 bit LFSR produces observed keystream, cipher is cracked

14 /16



Modern stream ciphers

Project eStream: project to “identify new stream ciphers suitable
for widespread adoption”, organised by the EU ECRYPT network
— HC-128, Rabbit, Salsa20/12, SOSEMANUK,

Grain vl, MICKEY 2.0, Trivium

15/16



Modern stream ciphers

Project eStream: project to “identify new stream ciphers suitable
for widespread adoption”, organised by the EU ECRYPT network
— HC-128, Rabbit, Salsa20/12, SOSEMANUK,

Grain vl, MICKEY 2.0, Trivium

Conjecture
These eStream stream ciphers are “secure”

15/16



Concluding remarks

16 /16



Concluding remarks

» Perfect secrecy does not capture all possible attacks.
— need for different security definition

16 /16



Concluding remarks

» Perfect secrecy does not capture all possible attacks.
— need for different security definition

» Theorem (Shannon 1949) Let (E, D) be a cipher over
(M,C,K). If (E, D) satisfies perfect secrecy, then the keys
should be at least as long as the plaintexts (|M| < |K]).
= Stream ciphers do not satisfy perfect secrecy because the
keys in KC are smaller than the messages in M
— need for different security definition

16 /16



Concluding remarks

» Perfect secrecy does not capture all possible attacks.
— need for different security definition

» Theorem (Shannon 1949) Let (E, D) be a cipher over
(M,C,K). If (E, D) satisfies perfect secrecy, then the keys
should be at least as long as the plaintexts (|M| < |K]).
= Stream ciphers do not satisfy perfect secrecy because the
keys in KC are smaller than the messages in M
— need for different security definition

» The design of crypto primitives is a subtle and error prone
task: define threat model, propose construction, prove that
breaking construction would solve an underlying hard problem.
— use standardised publicly know primitives

16 /16



Concluding remarks

» Perfect secrecy does not capture all possible attacks.
— need for different security definition

» Theorem (Shannon 1949) Let (E, D) be a cipher over
(M,C,K). If (E, D) satisfies perfect secrecy, then the keys
should be at least as long as the plaintexts (|M| < |K]).
= Stream ciphers do not satisfy perfect secrecy because the
keys in KC are smaller than the messages in M
— need for different security definition

» The design of crypto primitives is a subtle and error prone
task: define threat model, propose construction, prove that
breaking construction would solve an underlying hard problem.
— use standardised publicly know primitives

» Crypto primitives are secure under a precisely defined threat
model.
— respect the security assumptions of the crypto primitives
you use

16 /16



