
Stream ciphers

Myrto Arapinis
School of Informatics

University of Edinburgh

February 29, 2015

1 / 16

The One-Time Pad (OTP)

I M = C = K = {0, 1}n

I Encryption: ∀k ∈ K. ∀m ∈M. E (k,m) = k ⊕m

k = 0 1 1 0 1 0 0 1
m = 1 0 0 0 1 0 1 1

c = 1 1 1 0 0 0 1 0

I Decryption: ∀k ∈ K. ∀c ∈ C. D(k, c) = k ⊕ c

k = 0 1 1 0 1 0 0 1
c = 1 1 1 0 0 0 1 0

m = 1 0 0 0 1 0 1 1

I Consistency: D(k ,E (k ,m)) = k ⊕ (k ⊕m) = m

2 / 16

The One-Time Pad (OTP)

I M = C = K = {0, 1}n

I Encryption: ∀k ∈ K. ∀m ∈M. E (k,m) = k ⊕m

k = 0 1 1 0 1 0 0 1
m = 1 0 0 0 1 0 1 1

c = 1 1 1 0 0 0 1 0

I Decryption: ∀k ∈ K. ∀c ∈ C. D(k, c) = k ⊕ c

k = 0 1 1 0 1 0 0 1
c = 1 1 1 0 0 0 1 0

m = 1 0 0 0 1 0 1 1

I Consistency: D(k ,E (k ,m)) = k ⊕ (k ⊕m) = m

2 / 16

The One-Time Pad (OTP)

I M = C = K = {0, 1}n

I Encryption: ∀k ∈ K. ∀m ∈M. E (k,m) = k ⊕m

k = 0 1 1 0 1 0 0 1
m = 1 0 0 0 1 0 1 1

c = 1 1 1 0 0 0 1 0

I Decryption: ∀k ∈ K. ∀c ∈ C. D(k, c) = k ⊕ c

k = 0 1 1 0 1 0 0 1
c = 1 1 1 0 0 0 1 0

m = 1 0 0 0 1 0 1 1

I Consistency: D(k ,E (k ,m)) = k ⊕ (k ⊕m) = m

2 / 16

The One-Time Pad (OTP)

I M = C = K = {0, 1}n

I Encryption: ∀k ∈ K. ∀m ∈M. E (k,m) = k ⊕m

k = 0 1 1 0 1 0 0 1
m = 1 0 0 0 1 0 1 1

c = 1 1 1 0 0 0 1 0

I Decryption: ∀k ∈ K. ∀c ∈ C. D(k, c) = k ⊕ c

k = 0 1 1 0 1 0 0 1
c = 1 1 1 0 0 0 1 0

m = 1 0 0 0 1 0 1 1

I Consistency: D(k ,E (k ,m)) = k ⊕ (k ⊕m) = m

2 / 16

The One-Time Pad (OTP)

I M = C = K = {0, 1}n

I Encryption: ∀k ∈ K. ∀m ∈M. E (k,m) = k ⊕m

k = 0 1 1 0 1 0 0 1
m = 1 0 0 0 1 0 1 1

c = 1 1 1 0 0 0 1 0

I Decryption: ∀k ∈ K. ∀c ∈ C. D(k, c) = k ⊕ c

k = 0 1 1 0 1 0 0 1
c = 1 1 1 0 0 0 1 0

m = 1 0 0 0 1 0 1 1

I Consistency: D(k ,E (k ,m)) = k ⊕ (k ⊕m) = m

2 / 16

The One-Time Pad (OTP)

I M = C = K = {0, 1}n

I Encryption: ∀k ∈ K. ∀m ∈M. E (k,m) = k ⊕m

k = 0 1 1 0 1 0 0 1
m = 1 0 0 0 1 0 1 1

c = 1 1 1 0 0 0 1 0

I Decryption: ∀k ∈ K. ∀c ∈ C. D(k, c) = k ⊕ c

k = 0 1 1 0 1 0 0 1
c = 1 1 1 0 0 0 1 0

m = 1 0 0 0 1 0 1 1

I Consistency: D(k ,E (k ,m)) = k ⊕ (k ⊕m) = m

2 / 16

The One-Time Pad (OTP)

I M = C = K = {0, 1}n

I Encryption: ∀k ∈ K. ∀m ∈M. E (k,m) = k ⊕m

k = 0 1 1 0 1 0 0 1
m = 1 0 0 0 1 0 1 1

c = 1 1 1 0 0 0 1 0

I Decryption: ∀k ∈ K. ∀c ∈ C. D(k, c) = k ⊕ c

k = 0 1 1 0 1 0 0 1
c = 1 1 1 0 0 0 1 0

m = 1 0 0 0 1 0 1 1

I Consistency: D(k ,E (k ,m)) = k ⊕ (k ⊕m) = m

2 / 16

Perfect secrecy

Definition

A cipher (E ,D) over (M, C,K) satisfies perfect secrecy if for all
messages m1,m2 ∈M of same length (|m1| = |m2|), and for all
ciphertexts c ∈ C

|Pr(E (k,m1) = c)− Pr(E (k,m2) = c)| ≤ ε

where k
r←− K and ε is some “negligible quantity”.

3 / 16

OTP satisfies perfect secrecy

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages m ∈M and all
ciphertexts c ∈ C

Pr(E (k ,m) = c)

= #{k∈K: k⊕m=c}
#K

= #{k∈K: k=m⊕c}
#K

= 1
#K

where k
r←− K.

Thus, for all messages m1,m2 ∈M, and for all ciphertexts c ∈ C

|Pr(E (k ,m1) = c)− Pr(E (k ,m2) = c)| ≤
∣∣∣∣ 1

#K
− 1

#K

∣∣∣∣ = 0

4 / 16

OTP satisfies perfect secrecy

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages m ∈M and all
ciphertexts c ∈ C

Pr(E (k ,m) = c)

= #{k∈K: k⊕m=c}
#K

= #{k∈K: k=m⊕c}
#K

= 1
#K

where k
r←− K.

Thus, for all messages m1,m2 ∈M, and for all ciphertexts c ∈ C

|Pr(E (k ,m1) = c)− Pr(E (k ,m2) = c)| ≤
∣∣∣∣ 1

#K
− 1

#K

∣∣∣∣ = 0

4 / 16

OTP satisfies perfect secrecy

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages m ∈M and all
ciphertexts c ∈ C

Pr(E (k ,m) = c) = #{k∈K: k⊕m=c}
#K

= #{k∈K: k=m⊕c}
#K

= 1
#K

where k
r←− K.

Thus, for all messages m1,m2 ∈M, and for all ciphertexts c ∈ C

|Pr(E (k ,m1) = c)− Pr(E (k ,m2) = c)| ≤
∣∣∣∣ 1

#K
− 1

#K

∣∣∣∣ = 0

4 / 16

OTP satisfies perfect secrecy

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages m ∈M and all
ciphertexts c ∈ C

Pr(E (k ,m) = c) = #{k∈K: k⊕m=c}
#K

= #{k∈K: k=m⊕c}
#K

= 1
#K

where k
r←− K.

Thus, for all messages m1,m2 ∈M, and for all ciphertexts c ∈ C

|Pr(E (k ,m1) = c)− Pr(E (k ,m2) = c)| ≤
∣∣∣∣ 1

#K
− 1

#K

∣∣∣∣ = 0

4 / 16

OTP satisfies perfect secrecy

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages m ∈M and all
ciphertexts c ∈ C

Pr(E (k ,m) = c) = #{k∈K: k⊕m=c}
#K

= #{k∈K: k=m⊕c}
#K

= 1
#K

where k
r←− K.

Thus, for all messages m1,m2 ∈M, and for all ciphertexts c ∈ C

|Pr(E (k ,m1) = c)− Pr(E (k ,m2) = c)| ≤
∣∣∣∣ 1

#K
− 1

#K

∣∣∣∣ = 0

4 / 16

OTP satisfies perfect secrecy

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages m ∈M and all
ciphertexts c ∈ C

Pr(E (k ,m) = c) = #{k∈K: k⊕m=c}
#K

= #{k∈K: k=m⊕c}
#K

= 1
#K

where k
r←− K.

Thus, for all messages m1,m2 ∈M, and for all ciphertexts c ∈ C

|Pr(E (k ,m1) = c)− Pr(E (k ,m2) = c)| ≤

∣∣∣∣ 1

#K
− 1

#K

∣∣∣∣ = 0

4 / 16

OTP satisfies perfect secrecy

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages m ∈M and all
ciphertexts c ∈ C

Pr(E (k ,m) = c) = #{k∈K: k⊕m=c}
#K

= #{k∈K: k=m⊕c}
#K

= 1
#K

where k
r←− K.

Thus, for all messages m1,m2 ∈M, and for all ciphertexts c ∈ C

|Pr(E (k ,m1) = c)− Pr(E (k ,m2) = c)| ≤
∣∣∣∣ 1

#K
− 1

#K

∣∣∣∣ = 0

4 / 16

Limitations of OTP

I Key-length!

I The key should be as long as the plaintext.

I Getting true randomness!
I The key should not be guessable from an attacker.

I Perfect secrecy does not capture all possible attacks

I OTP is subject to two-time pad attacks
given m1 ⊕ k and m2 ⊕ k, we can compute
m1 ⊕m2 = (m1 ⊕ k)⊕ (m2 ⊕ k)
English has enough redundancy s.t. m1 ⊕m2 → m1,m2

I OTP is malleable
given the ciphertext c = E (k,m) with m = to bob : m0, it is
possible to compute the ciphertext c ′ = E (k,m′) with
m′ = to eve : m0

c ′ := c ⊕ ”to bob : 00 . . . 00”⊕ ”to eve : 00 . . . 00”

5 / 16

Limitations of OTP

I Key-length!
I The key should be as long as the plaintext.

I Getting true randomness!
I The key should not be guessable from an attacker.

I Perfect secrecy does not capture all possible attacks

I OTP is subject to two-time pad attacks
given m1 ⊕ k and m2 ⊕ k , we can compute
m1 ⊕m2 = (m1 ⊕ k)⊕ (m2 ⊕ k)
English has enough redundancy s.t. m1 ⊕m2 → m1,m2

I OTP is malleable
given the ciphertext c = E (k,m) with m = to bob : m0, it is
possible to compute the ciphertext c ′ = E (k,m′) with
m′ = to eve : m0

c ′ := c ⊕ ”to bob : 00 . . . 00”⊕ ”to eve : 00 . . . 00”

5 / 16

Limitations of OTP

I Key-length!
I The key should be as long as the plaintext.

I Getting true randomness!
I The key should not be guessable from an attacker.

I Perfect secrecy does not capture all possible attacks

I OTP is subject to two-time pad attacks
given m1 ⊕ k and m2 ⊕ k , we can compute
m1 ⊕m2 = (m1 ⊕ k)⊕ (m2 ⊕ k)
English has enough redundancy s.t. m1 ⊕m2 → m1,m2

I OTP is malleable
given the ciphertext c = E (k,m) with m = to bob : m0, it is
possible to compute the ciphertext c ′ = E (k,m′) with
m′ = to eve : m0

c ′ := c ⊕ ”to bob : 00 . . . 00”⊕ ”to eve : 00 . . . 00”

5 / 16

Limitations of OTP

I Key-length!
I The key should be as long as the plaintext.

I Getting true randomness!
I The key should not be guessable from an attacker.

I Perfect secrecy does not capture all possible attacks

I OTP is subject to two-time pad attacks
given m1 ⊕ k and m2 ⊕ k, we can compute
m1 ⊕m2 = (m1 ⊕ k)⊕ (m2 ⊕ k)
English has enough redundancy s.t. m1 ⊕m2 → m1,m2

I OTP is malleable
given the ciphertext c = E (k,m) with m = to bob : m0, it is
possible to compute the ciphertext c ′ = E (k,m′) with
m′ = to eve : m0

c ′ := c ⊕ ”to bob : 00 . . . 00”⊕ ”to eve : 00 . . . 00”

5 / 16

Limitations of OTP

I Key-length!
I The key should be as long as the plaintext.

I Getting true randomness!
I The key should not be guessable from an attacker.

I Perfect secrecy does not capture all possible attacks
I OTP is subject to two-time pad attacks

given m1 ⊕ k and m2 ⊕ k , we can compute
m1 ⊕m2 = (m1 ⊕ k)⊕ (m2 ⊕ k)
English has enough redundancy s.t. m1 ⊕m2 → m1,m2

I OTP is malleable
given the ciphertext c = E (k,m) with m = to bob : m0, it is
possible to compute the ciphertext c ′ = E (k,m′) with
m′ = to eve : m0

c ′ := c ⊕ ”to bob : 00 . . . 00”⊕ ”to eve : 00 . . . 00”

5 / 16

Limitations of OTP

I Key-length!
I The key should be as long as the plaintext.

I Getting true randomness!
I The key should not be guessable from an attacker.

I Perfect secrecy does not capture all possible attacks
I OTP is subject to two-time pad attacks

given m1 ⊕ k and m2 ⊕ k , we can compute
m1 ⊕m2 = (m1 ⊕ k)⊕ (m2 ⊕ k)
English has enough redundancy s.t. m1 ⊕m2 → m1,m2

I OTP is malleable
given the ciphertext c = E (k ,m) with m = to bob : m0, it is
possible to compute the ciphertext c ′ = E (k,m′) with
m′ = to eve : m0

c ′ := c ⊕ ”to bob : 00 . . . 00”⊕ ”to eve : 00 . . . 00”

5 / 16

Stream ciphers

I Goal: make the OTP practical

I Idea: use a pseudorandom key rather than a really random key

I The key will not really be random, but will look random
I The key will be generated from a key seed using a

Pseudo-Random Generator (PRG)
G : {0, 1}s → {0, 1}n with s << n

I Encryption using a PRG G : E (k,m) = G (k)⊕m

I Decryption using a PRG G : D(k , c) = G (k)⊕ c

I Stream ciphers are subject to two-time pad attacks

I Stream ciphers are malleable

6 / 16

Stream ciphers

I Goal: make the OTP practical

I Idea: use a pseudorandom key rather than a really random key

I The key will not really be random, but will look random
I The key will be generated from a key seed using a

Pseudo-Random Generator (PRG)
G : {0, 1}s → {0, 1}n with s << n

I Encryption using a PRG G : E (k,m) = G (k)⊕m

I Decryption using a PRG G : D(k , c) = G (k)⊕ c

I Stream ciphers are subject to two-time pad attacks

I Stream ciphers are malleable

6 / 16

Stream ciphers

I Goal: make the OTP practical

I Idea: use a pseudorandom key rather than a really random key

I The key will not really be random, but will look random

I The key will be generated from a key seed using a
Pseudo-Random Generator (PRG)
G : {0, 1}s → {0, 1}n with s << n

I Encryption using a PRG G : E (k,m) = G (k)⊕m

I Decryption using a PRG G : D(k , c) = G (k)⊕ c

I Stream ciphers are subject to two-time pad attacks

I Stream ciphers are malleable

6 / 16

Stream ciphers

I Goal: make the OTP practical

I Idea: use a pseudorandom key rather than a really random key

I The key will not really be random, but will look random
I The key will be generated from a key seed using a

Pseudo-Random Generator (PRG)
G : {0, 1}s → {0, 1}n with s << n

I Encryption using a PRG G : E (k,m) = G (k)⊕m

I Decryption using a PRG G : D(k , c) = G (k)⊕ c

I Stream ciphers are subject to two-time pad attacks

I Stream ciphers are malleable

6 / 16

Stream ciphers

I Goal: make the OTP practical

I Idea: use a pseudorandom key rather than a really random key

I The key will not really be random, but will look random
I The key will be generated from a key seed using a

Pseudo-Random Generator (PRG)
G : {0, 1}s → {0, 1}n with s << n

I Encryption using a PRG G : E (k,m) = G (k)⊕m

I Decryption using a PRG G : D(k , c) = G (k)⊕ c

I Stream ciphers are subject to two-time pad attacks

I Stream ciphers are malleable

6 / 16

Stream ciphers

I Goal: make the OTP practical

I Idea: use a pseudorandom key rather than a really random key

I The key will not really be random, but will look random
I The key will be generated from a key seed using a

Pseudo-Random Generator (PRG)
G : {0, 1}s → {0, 1}n with s << n

I Encryption using a PRG G : E (k,m) = G (k)⊕m

I Decryption using a PRG G : D(k , c) = G (k)⊕ c

I Stream ciphers are subject to two-time pad attacks

I Stream ciphers are malleable

6 / 16

Stream ciphers

I Goal: make the OTP practical

I Idea: use a pseudorandom key rather than a really random key

I The key will not really be random, but will look random
I The key will be generated from a key seed using a

Pseudo-Random Generator (PRG)
G : {0, 1}s → {0, 1}n with s << n

I Encryption using a PRG G : E (k,m) = G (k)⊕m

I Decryption using a PRG G : D(k , c) = G (k)⊕ c

I Stream ciphers are subject to two-time pad attacks

I Stream ciphers are malleable

6 / 16

Stream ciphers

I Goal: make the OTP practical

I Idea: use a pseudorandom key rather than a really random key

I The key will not really be random, but will look random
I The key will be generated from a key seed using a

Pseudo-Random Generator (PRG)
G : {0, 1}s → {0, 1}n with s << n

I Encryption using a PRG G : E (k,m) = G (k)⊕m

I Decryption using a PRG G : D(k , c) = G (k)⊕ c

I Stream ciphers are subject to two-time pad attacks

I Stream ciphers are malleable

6 / 16

RC4

I Stream cipher invented by Ron Rivest in 1987

I Consists of 2 phases:

seed
k

2048 bits

initialisation keystream generation

1 byte per
round

I Main data structure: array S of 256 bytes.

I Used in HTTPS and WEP

I Weaknesses of RC4:
I first bytes are biased
−→ drop the first to 256 generated bytes

I subject to related keys attacks
−→ choose randomly generated keys as seeds

7 / 16

RC4

I Stream cipher invented by Ron Rivest in 1987

I Consists of 2 phases:

seed
k

2048 bits

initialisation keystream generation

1 byte per
round

I Main data structure: array S of 256 bytes.

I Used in HTTPS and WEP

I Weaknesses of RC4:
I first bytes are biased
−→ drop the first to 256 generated bytes

I subject to related keys attacks
−→ choose randomly generated keys as seeds

7 / 16

RC4

I Stream cipher invented by Ron Rivest in 1987

I Consists of 2 phases:

seed
k

2048 bits

initialisation keystream generation

1 byte per
round

I Main data structure: array S of 256 bytes.

I Used in HTTPS and WEP

I Weaknesses of RC4:
I first bytes are biased
−→ drop the first to 256 generated bytes

I subject to related keys attacks
−→ choose randomly generated keys as seeds

7 / 16

RC4

I Stream cipher invented by Ron Rivest in 1987

I Consists of 2 phases:

seed
k

2048 bits

initialisation keystream generation

1 byte per
round

I Main data structure: array S of 256 bytes.

I Used in HTTPS and WEP

I Weaknesses of RC4:
I first bytes are biased
−→ drop the first to 256 generated bytes

I subject to related keys attacks
−→ choose randomly generated keys as seeds

7 / 16

RC4

I Stream cipher invented by Ron Rivest in 1987

I Consists of 2 phases:

seed
k

2048 bits

initialisation keystream generation

1 byte per
round

I Main data structure: array S of 256 bytes.

I Used in HTTPS and WEP

I Weaknesses of RC4:

I first bytes are biased
−→ drop the first to 256 generated bytes

I subject to related keys attacks
−→ choose randomly generated keys as seeds

7 / 16

RC4

I Stream cipher invented by Ron Rivest in 1987

I Consists of 2 phases:

seed
k

2048 bits

initialisation keystream generation

1 byte per
round

I Main data structure: array S of 256 bytes.

I Used in HTTPS and WEP

I Weaknesses of RC4:
I first bytes are biased
−→ drop the first to 256 generated bytes

I subject to related keys attacks
−→ choose randomly generated keys as seeds

7 / 16

RC4

I Stream cipher invented by Ron Rivest in 1987

I Consists of 2 phases:

seed
k

2048 bits

initialisation keystream generation

1 byte per
round

I Main data structure: array S of 256 bytes.

I Used in HTTPS and WEP

I Weaknesses of RC4:
I first bytes are biased
−→ drop the first to 256 generated bytes

I subject to related keys attacks
−→ choose randomly generated keys as seeds

7 / 16

RC4: initialisation

for i := 0 to 255 do

S [i] := i
end

j := 0
for i := 0 to 255 do

j := (j + S [i] + K [i(mod |K |)])(mod 256)
swap(S [i],S [j])

end

i := 0
j := 0

8 / 16

RC4: key stream generation

while generatingOutput
i := i + 1(mod 256)
j := j + S [i](mod 256)
swap(S [i],S [j])
output(S [S [i] + S [j](mod 256)])

end

9 / 16

WEP uses RC4

RC4 (IV II k)

m

ciphertext IV

k k

+

Initialisation Vector (IV): 24-bits long string

10 / 16

Weaknesses of WEP

I two-time pad attack: IV is 24 bits long, so the key is reused
after at most 224 frames
−→ use longer IVs

I Fluhrer, Mantin and Shamir (FMS) attack (related keys
attack):
- the keys only differ in the 24 bits IV
- first bytes of key stream known because standard headers

are always sent

- for certain IVs knowing m bytes of key and keystream means
you can deduce byte m + 1 of key
−→ instead of using related IVs, generate IVs using a PRG

Remark

The FMS attack does not apply to RC4-based SSL (TLS), since
SSL generates the encryption keys it uses for RC4 by hashing,
meaning that different SSL sessions have unrelated keys

11 / 16

Weaknesses of WEP
I two-time pad attack: IV is 24 bits long, so the key is reused

after at most 224 frames
−→ use longer IVs

I Fluhrer, Mantin and Shamir (FMS) attack (related keys
attack):
- the keys only differ in the 24 bits IV
- first bytes of key stream known because standard headers

are always sent

- for certain IVs knowing m bytes of key and keystream means
you can deduce byte m + 1 of key
−→ instead of using related IVs, generate IVs using a PRG

Remark

The FMS attack does not apply to RC4-based SSL (TLS), since
SSL generates the encryption keys it uses for RC4 by hashing,
meaning that different SSL sessions have unrelated keys

11 / 16

Weaknesses of WEP
I two-time pad attack: IV is 24 bits long, so the key is reused

after at most 224 frames
−→ use longer IVs

I Fluhrer, Mantin and Shamir (FMS) attack (related keys
attack):
- the keys only differ in the 24 bits IV
- first bytes of key stream known because standard headers

are always sent

- for certain IVs knowing m bytes of key and keystream means
you can deduce byte m + 1 of key
−→ instead of using related IVs, generate IVs using a PRG

Remark

The FMS attack does not apply to RC4-based SSL (TLS), since
SSL generates the encryption keys it uses for RC4 by hashing,
meaning that different SSL sessions have unrelated keys

11 / 16

Weaknesses of WEP
I two-time pad attack: IV is 24 bits long, so the key is reused

after at most 224 frames
−→ use longer IVs

I Fluhrer, Mantin and Shamir (FMS) attack (related keys
attack):
- the keys only differ in the 24 bits IV
- first bytes of key stream known because standard headers

are always sent

- for certain IVs knowing m bytes of key and keystream means
you can deduce byte m + 1 of key
−→ instead of using related IVs, generate IVs using a PRG

Remark

The FMS attack does not apply to RC4-based SSL (TLS), since
SSL generates the encryption keys it uses for RC4 by hashing,
meaning that different SSL sessions have unrelated keys

11 / 16

Linear Feedback Shift Registers (LFSRs)

I K = {0, 1}s
I Main data structure: register R of s bits

I Initialisation: R := k

I Keystream generation: 1-bit output per round
taps: i1, i2, . . . i`
feedback bit: R[i1]⊕ R[i2]⊕ · · · ⊕ R[i`]
output bit: R[s]

+

i1 i2 il

feedback bit

output bit

I Broken LFSR-based stream ciphers:
I DVD encryption: CSS (2 LFSRs)
I GSM encryption: A5 (3 LFSRs)
I Bluetooth encryption: E0 (4 LFSRs)

12 / 16

Linear Feedback Shift Registers (LFSRs)
I K = {0, 1}s

I Main data structure: register R of s bits

I Initialisation: R := k

I Keystream generation: 1-bit output per round
taps: i1, i2, . . . i`
feedback bit: R[i1]⊕ R[i2]⊕ · · · ⊕ R[i`]
output bit: R[s]

+

i1 i2 il

feedback bit

output bit

I Broken LFSR-based stream ciphers:
I DVD encryption: CSS (2 LFSRs)
I GSM encryption: A5 (3 LFSRs)
I Bluetooth encryption: E0 (4 LFSRs)

12 / 16

Linear Feedback Shift Registers (LFSRs)
I K = {0, 1}s
I Main data structure: register R of s bits

I Initialisation: R := k

I Keystream generation: 1-bit output per round
taps: i1, i2, . . . i`
feedback bit: R[i1]⊕ R[i2]⊕ · · · ⊕ R[i`]
output bit: R[s]

+

i1 i2 il

feedback bit

output bit

I Broken LFSR-based stream ciphers:
I DVD encryption: CSS (2 LFSRs)
I GSM encryption: A5 (3 LFSRs)
I Bluetooth encryption: E0 (4 LFSRs)

12 / 16

Linear Feedback Shift Registers (LFSRs)
I K = {0, 1}s
I Main data structure: register R of s bits

I Initialisation: R := k

I Keystream generation: 1-bit output per round
taps: i1, i2, . . . i`
feedback bit: R[i1]⊕ R[i2]⊕ · · · ⊕ R[i`]
output bit: R[s]

+

i1 i2 il

feedback bit

output bit

I Broken LFSR-based stream ciphers:
I DVD encryption: CSS (2 LFSRs)
I GSM encryption: A5 (3 LFSRs)
I Bluetooth encryption: E0 (4 LFSRs)

12 / 16

Linear Feedback Shift Registers (LFSRs)
I K = {0, 1}s
I Main data structure: register R of s bits

I Initialisation: R := k

I Keystream generation: 1-bit output per round
taps: i1, i2, . . . i`
feedback bit: R[i1]⊕ R[i2]⊕ · · · ⊕ R[i`]
output bit: R[s]

+

i1 i2 il

feedback bit

output bit

I Broken LFSR-based stream ciphers:
I DVD encryption: CSS (2 LFSRs)
I GSM encryption: A5 (3 LFSRs)
I Bluetooth encryption: E0 (4 LFSRs)

12 / 16

Linear Feedback Shift Registers (LFSRs)
I K = {0, 1}s
I Main data structure: register R of s bits

I Initialisation: R := k

I Keystream generation: 1-bit output per round
taps: i1, i2, . . . i`
feedback bit: R[i1]⊕ R[i2]⊕ · · · ⊕ R[i`]
output bit: R[s]

+

i1 i2 il

feedback bit

output bit

I Broken LFSR-based stream ciphers:
I DVD encryption: CSS (2 LFSRs)
I GSM encryption: A5 (3 LFSRs)
I Bluetooth encryption: E0 (4 LFSRs)

12 / 16

Content Scrambling System (CSS) uses LFSRs

I K = {0, 1}40

I Data structures: 17-bits LFSR (R17) and 25-bits LFSR (R25)

I Initialisation: R17 := 1||K [0− 15]
R25 := 1||K [16− 39]

I Keystream generation: 1-byte output per round

17‐bit LFSR

25‐bit LFSR

1 byte

1 byte

carry‐out from
previous round

+ (mod 256)
output byte

carry-out

13 / 16

Content Scrambling System (CSS) uses LFSRs

I K = {0, 1}40

I Data structures: 17-bits LFSR (R17) and 25-bits LFSR (R25)

I Initialisation: R17 := 1||K [0− 15]
R25 := 1||K [16− 39]

I Keystream generation: 1-byte output per round

17‐bit LFSR

25‐bit LFSR

1 byte

1 byte

carry‐out from
previous round

+ (mod 256)
output byte

carry-out

13 / 16

Content Scrambling System (CSS) uses LFSRs

I K = {0, 1}40

I Data structures: 17-bits LFSR (R17) and 25-bits LFSR (R25)

I Initialisation: R17 := 1||K [0− 15]
R25 := 1||K [16− 39]

I Keystream generation: 1-byte output per round

17‐bit LFSR

25‐bit LFSR

1 byte

1 byte

carry‐out from
previous round

+ (mod 256)
output byte

carry-out

13 / 16

Content Scrambling System (CSS) uses LFSRs

I K = {0, 1}40

I Data structures: 17-bits LFSR (R17) and 25-bits LFSR (R25)

I Initialisation: R17 := 1||K [0− 15]
R25 := 1||K [16− 39]

I Keystream generation: 1-byte output per round

17‐bit LFSR

25‐bit LFSR

1 byte

1 byte

carry‐out from
previous round

+ (mod 256)
output byte

carry-out

13 / 16

Content Scrambling System (CSS) uses LFSRs

I K = {0, 1}40

I Data structures: 17-bits LFSR (R17) and 25-bits LFSR (R25)

I Initialisation: R17 := 1||K [0− 15]
R25 := 1||K [16− 39]

I Keystream generation: 1-byte output per round

17‐bit LFSR

25‐bit LFSR

1 byte

1 byte

carry‐out from
previous round

+ (mod 256)
output byte

carry-out

13 / 16

Weaknesses in CSS

Can be broken in time 217. The idea of the attack is as follows:

I Because of structure of MPEG-2, first 20 bytes of plaintext
are known

I Hence also first 20 bytes of keystream are known

I Given output of 17 bit LFSR, can deduce output of 25 bit
LFSR by subtraction

I Hence try all 217 possibilities for 17 bit LFSR and if generated
25 bit LFSR produces observed keystream, cipher is cracked

14 / 16

Weaknesses in CSS

Can be broken in time 217. The idea of the attack is as follows:

I Because of structure of MPEG-2, first 20 bytes of plaintext
are known

I Hence also first 20 bytes of keystream are known

I Given output of 17 bit LFSR, can deduce output of 25 bit
LFSR by subtraction

I Hence try all 217 possibilities for 17 bit LFSR and if generated
25 bit LFSR produces observed keystream, cipher is cracked

14 / 16

Weaknesses in CSS

Can be broken in time 217. The idea of the attack is as follows:

I Because of structure of MPEG-2, first 20 bytes of plaintext
are known

I Hence also first 20 bytes of keystream are known

I Given output of 17 bit LFSR, can deduce output of 25 bit
LFSR by subtraction

I Hence try all 217 possibilities for 17 bit LFSR and if generated
25 bit LFSR produces observed keystream, cipher is cracked

14 / 16

Weaknesses in CSS

Can be broken in time 217. The idea of the attack is as follows:

I Because of structure of MPEG-2, first 20 bytes of plaintext
are known

I Hence also first 20 bytes of keystream are known

I Given output of 17 bit LFSR, can deduce output of 25 bit
LFSR by subtraction

I Hence try all 217 possibilities for 17 bit LFSR and if generated
25 bit LFSR produces observed keystream, cipher is cracked

14 / 16

Weaknesses in CSS

Can be broken in time 217. The idea of the attack is as follows:

I Because of structure of MPEG-2, first 20 bytes of plaintext
are known

I Hence also first 20 bytes of keystream are known

I Given output of 17 bit LFSR, can deduce output of 25 bit
LFSR by subtraction

I Hence try all 217 possibilities for 17 bit LFSR and if generated
25 bit LFSR produces observed keystream, cipher is cracked

14 / 16

Modern stream ciphers

Project eStream: project to “identify new stream ciphers suitable
for widespread adoption”, organised by the EU ECRYPT network
−→ HC-128, Rabbit, Salsa20/12, SOSEMANUK,

Grain v1, MICKEY 2.0, Trivium

Conjecture

These eStream stream ciphers are “secure”

15 / 16

Modern stream ciphers

Project eStream: project to “identify new stream ciphers suitable
for widespread adoption”, organised by the EU ECRYPT network
−→ HC-128, Rabbit, Salsa20/12, SOSEMANUK,

Grain v1, MICKEY 2.0, Trivium

Conjecture

These eStream stream ciphers are “secure”

15 / 16

Concluding remarks

I Perfect secrecy does not capture all possible attacks.
−→ need for different security definition

I Theorem (Shannon 1949) Let (E ,D) be a cipher over
(M, C,K). If (E ,D) satisfies perfect secrecy, then the keys
should be at least as long as the plaintexts (|M| ≤ |K|).
⇒ Stream ciphers do not satisfy perfect secrecy because the
keys in K are smaller than the messages in M
−→ need for different security definition

I The design of crypto primitives is a subtle and error prone
task: define threat model, propose construction, prove that
breaking construction would solve an underlying hard problem.
−→ use standardised publicly know primitives

I Crypto primitives are secure under a precisely defined threat
model.
−→ respect the security assumptions of the crypto primitives

you use

16 / 16

Concluding remarks
I Perfect secrecy does not capture all possible attacks.
−→ need for different security definition

I Theorem (Shannon 1949) Let (E ,D) be a cipher over
(M, C,K). If (E ,D) satisfies perfect secrecy, then the keys
should be at least as long as the plaintexts (|M| ≤ |K|).
⇒ Stream ciphers do not satisfy perfect secrecy because the
keys in K are smaller than the messages in M
−→ need for different security definition

I The design of crypto primitives is a subtle and error prone
task: define threat model, propose construction, prove that
breaking construction would solve an underlying hard problem.
−→ use standardised publicly know primitives

I Crypto primitives are secure under a precisely defined threat
model.
−→ respect the security assumptions of the crypto primitives

you use

16 / 16

Concluding remarks
I Perfect secrecy does not capture all possible attacks.
−→ need for different security definition

I Theorem (Shannon 1949) Let (E ,D) be a cipher over
(M, C,K). If (E ,D) satisfies perfect secrecy, then the keys
should be at least as long as the plaintexts (|M| ≤ |K|).
⇒ Stream ciphers do not satisfy perfect secrecy because the
keys in K are smaller than the messages in M
−→ need for different security definition

I The design of crypto primitives is a subtle and error prone
task: define threat model, propose construction, prove that
breaking construction would solve an underlying hard problem.
−→ use standardised publicly know primitives

I Crypto primitives are secure under a precisely defined threat
model.
−→ respect the security assumptions of the crypto primitives

you use

16 / 16

Concluding remarks
I Perfect secrecy does not capture all possible attacks.
−→ need for different security definition

I Theorem (Shannon 1949) Let (E ,D) be a cipher over
(M, C,K). If (E ,D) satisfies perfect secrecy, then the keys
should be at least as long as the plaintexts (|M| ≤ |K|).
⇒ Stream ciphers do not satisfy perfect secrecy because the
keys in K are smaller than the messages in M
−→ need for different security definition

I The design of crypto primitives is a subtle and error prone
task: define threat model, propose construction, prove that
breaking construction would solve an underlying hard problem.
−→ use standardised publicly know primitives

I Crypto primitives are secure under a precisely defined threat
model.
−→ respect the security assumptions of the crypto primitives

you use

16 / 16

Concluding remarks
I Perfect secrecy does not capture all possible attacks.
−→ need for different security definition

I Theorem (Shannon 1949) Let (E ,D) be a cipher over
(M, C,K). If (E ,D) satisfies perfect secrecy, then the keys
should be at least as long as the plaintexts (|M| ≤ |K|).
⇒ Stream ciphers do not satisfy perfect secrecy because the
keys in K are smaller than the messages in M
−→ need for different security definition

I The design of crypto primitives is a subtle and error prone
task: define threat model, propose construction, prove that
breaking construction would solve an underlying hard problem.
−→ use standardised publicly know primitives

I Crypto primitives are secure under a precisely defined threat
model.
−→ respect the security assumptions of the crypto primitives

you use
16 / 16

