Myrto Arapinis School of Informatics University of Edinburgh

February 29, 2015

4 ロ ト 4 日 ト 4 三 ト 4 三 ト 2 9 Q (* 1/16)

$$\blacktriangleright \mathcal{M} = \mathcal{C} = \mathcal{K} = \{0,1\}^n$$

<ロ > < 回 > < 回 > < 三 > < 三 > 三 の Q (~ 2/16

$$\blacktriangleright \mathcal{M} = \mathcal{C} = \mathcal{K} = \{0,1\}^n$$

▶ Encryption: $\forall k \in \mathcal{K}$. $\forall m \in \mathcal{M}$. $E(k, m) = k \oplus m$

$$\blacktriangleright \mathcal{M} = \mathcal{C} = \mathcal{K} = \{0,1\}^n$$

▶ Encryption: $\forall k \in \mathcal{K}$. $\forall m \in \mathcal{M}$. $E(k, m) = k \oplus m$

$$k = 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1$$
$$m = 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1$$
$$c = 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0$$

<ロ > < 回 > < 巨 > < 巨 > < 巨 > 三 の Q (* 2/16

$$\blacktriangleright \mathcal{M} = \mathcal{C} = \mathcal{K} = \{0,1\}^n$$

▶ Encryption: $\forall k \in \mathcal{K}$. $\forall m \in \mathcal{M}$. $E(k, m) = k \oplus m$

k	=	0	1	1	0	1	0	0	1	
т	=	1	0	0	0	1	0	1	1	
С	=	1	1	1	0	0	0	1	0	

▶ Decryption: $\forall k \in \mathcal{K}$. $\forall c \in \mathcal{C}$. $D(k, c) = k \oplus c$

$$\blacktriangleright \mathcal{M} = \mathcal{C} = \mathcal{K} = \{0,1\}^n$$

▶ Encryption: $\forall k \in \mathcal{K}$. $\forall m \in \mathcal{M}$. $E(k, m) = k \oplus m$

k	=	0	1	1	0	1	0	0	1
т	=	1	0	0	0	1	0	1	1

 $c = 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0$

▶ Decryption: $\forall k \in \mathcal{K}$. $\forall c \in \mathcal{C}$. $D(k, c) = k \oplus c$

k	=	0	1	1	0	1	0	0	1
С	=	1	1	1	0	0	0	1	0
т	=	1	0	0	0	1	0	1	1

$$\blacktriangleright \mathcal{M} = \mathcal{C} = \mathcal{K} = \{0,1\}^n$$

▶ Encryption: $\forall k \in \mathcal{K}$. $\forall m \in \mathcal{M}$. $E(k, m) = k \oplus m$

k	=	0	1	1	0	1	0	0	1
т	=	1	0	0	0	1	0	1	1

 $c = 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0$

▶ Decryption: $\forall k \in \mathcal{K}$. $\forall c \in \mathcal{C}$. $D(k, c) = k \oplus c$

k	=	0	1	1	0	1	0	0	1
С	=	1	1	1	0	0	0	1	0

 $m = 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1$

► Consistency: $D(k, E(k, m)) = k \oplus (k \oplus m) = m$

2/16

Definition

A cipher (E, D) over $(\mathcal{M}, \mathcal{C}, \mathcal{K})$ satisfies perfect secrecy if for all messages $m_1, m_2 \in \mathcal{M}$ of same length $(|m_1| = |m_2|)$, and for all ciphertexts $c \in C$

$$|\Pr(E(k, m_1) = c) - \Pr(E(k, m_2) = c)| \le \epsilon$$

where $k \xleftarrow{r} \mathcal{K}$ and ϵ is some "negligible quantity".

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

<u>Proof:</u> We first note that for all messages $m \in \mathcal{M}$ and all ciphertexts $c \in \mathcal{C}$

Pr(E(k,m)=c)

where $k \stackrel{r}{\leftarrow} \mathcal{K}$.

<ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < < / > < < < / > < < < < / >

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

<u>Proof:</u> We first note that for all messages $m \in \mathcal{M}$ and all ciphertexts $c \in \mathcal{C}$

$$Pr(E(k,m)=c) = \frac{\#\{k\in\mathcal{K}: k\oplus m=c\}}{\#\mathcal{K}}$$

where $k \stackrel{r}{\leftarrow} \mathcal{K}$.

<ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < < / > < < < / > < < < < / >

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

<u>Proof:</u> We first note that for all messages $m \in \mathcal{M}$ and all ciphertexts $c \in \mathcal{C}$

$$Pr(E(k,m) = c) = \frac{\#\{k \in \mathcal{K}: k \oplus m = c\}}{\#\mathcal{K}}$$
$$= \frac{\#\{k \in \mathcal{K}: k = m \oplus c\}}{\#\mathcal{K}}$$

where $k \stackrel{r}{\leftarrow} \mathcal{K}$.

4 ロ ト 4 回 ト 4 三 ト 4 三 ト 三 9 Q (*
4/16

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

<u>Proof:</u> We first note that for all messages $m \in \mathcal{M}$ and all ciphertexts $c \in \mathcal{C}$

$$Pr(E(k,m) = c) = \frac{\#\{k \in \mathcal{K}: k \oplus m = c\}}{\#\mathcal{K}}$$
$$= \frac{\#\{k \in \mathcal{K}: k = m \oplus c\}}{\#\mathcal{K}}$$
$$= \frac{1}{\#\mathcal{K}}$$

where $k \stackrel{r}{\leftarrow} \mathcal{K}$.

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

<u>Proof:</u> We first note that for all messages $m \in \mathcal{M}$ and all ciphertexts $c \in \mathcal{C}$

$$Pr(E(k,m) = c) = \frac{\#\{k \in \mathcal{K}: k \oplus m = c\}}{\#\mathcal{K}}$$
$$= \frac{\#\{k \in \mathcal{K}: k = m \oplus c\}}{\#\mathcal{K}}$$
$$= \frac{1}{\#\mathcal{K}}$$

where $k \leftarrow \mathcal{K}$. Thus, for all messages $m_1, m_2 \in \mathcal{M}$, and for all ciphertexts $c \in C$

$$|Pr(E(k,m_1)=c)-Pr(E(k,m_2)=c)| \leq$$

4 ロ ト 4 回 ト 4 三 ト 4 三 ト 三 9 Q (*
4/16

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

<u>Proof:</u> We first note that for all messages $m \in \mathcal{M}$ and all ciphertexts $c \in \mathcal{C}$

$$Pr(E(k,m) = c) = \frac{\#\{k \in \mathcal{K}: \ k \oplus m = c\}}{\#\mathcal{K}}$$
$$= \frac{\#\{k \in \mathcal{K}: \ k = m \oplus c\}}{\#\mathcal{K}}$$
$$= \frac{1}{\#\mathcal{K}}$$

where $k \xleftarrow{r} \mathcal{K}$. Thus, for all messages $m_1, m_2 \in \mathcal{M}$, and for all ciphertexts $c \in \mathcal{C}$

$$|Pr(E(k,m_1)=c) - Pr(E(k,m_2)=c)| \leq \left|\frac{1}{\#\mathcal{K}} - \frac{1}{\#\mathcal{K}}\right| = 0$$

< □ > < 部 > < 差 > < 差 > 差 > 差 の Q (~ 5/16)

- ► Key-length!
 - The key should be as long as the plaintext.

- ► Key-length!
 - The key should be as long as the plaintext.
- Getting true randomness!
 - ► The key should not be guessable from an attacker.

- ► Key-length!
 - The key should be as long as the plaintext.
- Getting true randomness!
 - ► The key should not be guessable from an attacker.
- Perfect secrecy does not capture all possible attacks

- Key-length!
 - The key should be as long as the plaintext.
- Getting true randomness!
 - ► The key should not be guessable from an attacker.
- Perfect secrecy does not capture all possible attacks
 - OTP is subject to two-time pad attacks given m₁ ⊕ k and m₂ ⊕ k, we can compute m₁ ⊕ m₂ = (m₁ ⊕ k) ⊕ (m₂ ⊕ k) English has enough redundancy s.t. m₁ ⊕ m₂ → m₁, m₂

- Key-length!
 - The key should be as long as the plaintext.
- Getting true randomness!
 - ► The key should not be guessable from an attacker.
- Perfect secrecy does not capture all possible attacks
 - OTP is subject to two-time pad attacks given m₁ ⊕ k and m₂ ⊕ k, we can compute m₁ ⊕ m₂ = (m₁ ⊕ k) ⊕ (m₂ ⊕ k) English has enough redundancy s.t. m₁ ⊕ m₂ → m₁, m₂
 - OTP is malleable given the ciphertext c = E(k, m) with $m = to \ bob : m_0$, it is possible to compute the ciphertext c' = E(k, m') with $m' = to \ eve : m_0$ $c' := c \oplus "to \ bob : 00 \dots 00" \oplus "to \ eve : 00 \dots 00"$

► Goal: make the OTP practical

- ► Goal: make the OTP practical
- ► Idea: use a pseudorandom key rather than a really random key

- ► Goal: make the OTP practical
- ► Idea: use a pseudorandom key rather than a really random key
 - ► The key will not really be random, but will look random

- ► Goal: make the OTP practical
- ► Idea: use a pseudorandom key rather than a really random key
 - ► The key will not really be random, but will look random
 - The key will be generated from a key seed using a Pseudo-Random Generator (PRG)
 G: {0,1}^s → {0,1}ⁿ with s << n

- ► Goal: make the OTP practical
- ► Idea: use a pseudorandom key rather than a really random key
 - ► The key will not really be random, but will look random

6/16

- The key will be generated from a key seed using a Pseudo-Random Generator (PRG)
 G: {0,1}^s → {0,1}ⁿ with s << n
- Encryption using a PRG G: $E(k,m) = G(k) \oplus m$

- ► Goal: make the OTP practical
- ► Idea: use a pseudorandom key rather than a really random key
 - ► The key will not really be random, but will look random

6/16

- The key will be generated from a key seed using a Pseudo-Random Generator (PRG)
 G: {0,1}^s → {0,1}ⁿ with s << n
- Encryption using a PRG G: $E(k,m) = G(k) \oplus m$
- Decryption using a PRG G: $D(k,c) = G(k) \oplus c$

- ► Goal: make the OTP practical
- ► Idea: use a pseudorandom key rather than a really random key
 - ► The key will not really be random, but will look random
 - The key will be generated from a key seed using a Pseudo-Random Generator (PRG)
 G: {0,1}^s → {0,1}ⁿ with s << n
- Encryption using a PRG G: $E(k,m) = G(k) \oplus m$
- Decryption using a PRG $G: D(k,c) = G(k) \oplus c$
- Stream ciphers are subject to two-time pad attacks

- ► Goal: make the OTP practical
- ► Idea: use a pseudorandom key rather than a really random key
 - ► The key will not really be random, but will look random
 - The key will be generated from a key seed using a Pseudo-Random Generator (PRG)
 G: {0,1}^s → {0,1}ⁿ with s << n
- Encryption using a PRG G: $E(k,m) = G(k) \oplus m$
- Decryption using a PRG $G: D(k,c) = G(k) \oplus c$
- Stream ciphers are subject to two-time pad attacks
- Stream ciphers are malleable

▶ Stream cipher invented by Ron Rivest in 1987

- ► Stream cipher invented by Ron Rivest in 1987
- ► Consists of 2 phases:

- ► Stream cipher invented by Ron Rivest in 1987
- ► Consists of 2 phases:

► Main data structure: array *S* of 256 bytes.

- Stream cipher invented by Ron Rivest in 1987
- Consists of 2 phases:

- ▶ Main data structure: array *S* of 256 bytes.
- Used in HTTPS and WEP

- Stream cipher invented by Ron Rivest in 1987
- Consists of 2 phases:

- ► Main data structure: array S of 256 bytes.
- ▶ Used in HTTPS and WEP
- Weaknesses of RC4:

- ► Stream cipher invented by Ron Rivest in 1987
- Consists of 2 phases:

- ▶ Main data structure: array S of 256 bytes.
- ▶ Used in HTTPS and WEP
- Weaknesses of RC4:
 - First bytes are biased
 → drop the first to 256 generated bytes

- ► Stream cipher invented by Ron Rivest in 1987
- Consists of 2 phases:

- ▶ Main data structure: array S of 256 bytes.
- Used in HTTPS and WEP
- Weaknesses of RC4:
 - First bytes are biased
 → drop the first to 256 generated bytes
 - ► subject to related keys attacks
 → choose randomly generated keys as seeds
 - E ⇒ E ∽ Q (7/16

RC4: initialisation

```
for i := 0 to 255 do

S[i] := i

end

j := 0

for i := 0 to 255 do

j := (j + S[i] + K[i(mod |K|)])(mod 256)

swap(S[i], S[j])

end

i := 0
```

j := 0

RC4: key stream generation

```
while generatingOutput

i := i + 1 \pmod{256}

j := j + S[i] \pmod{256}

swap(S[i], S[j])

output(S[S[i] + S[j] \pmod{256}])

end
```

WEP uses RC4

Initialisation Vector (IV): 24-bits long string

< □ > < @ > < 클 > < 클 > = ∽ < ♡ < ↔ 10 / 16

<ロト < 回 ト < 直 ト < 直 ト < 直 ト 差 の Q () 11/16

► two-time pad attack: IV is 24 bits long, so the key is reused after at most 2²⁴ frames

 $\longrightarrow use \ \text{longer} \ \text{IVs}$

- ► two-time pad attack: IV is 24 bits long, so the key is reused after at most 2²⁴ frames → use longer IVs
- Fluhrer, Mantin and Shamir (FMS) attack (related keys attack):
 - the keys only differ in the 24 bits IV
 - first bytes of key stream known because standard headers are always sent
 - for certain IVs knowing m bytes of key and keystream means you can deduce byte m+1 of key

 \longrightarrow instead of using related IVs, generate IVs using a PRG

- ► two-time pad attack: IV is 24 bits long, so the key is reused after at most 2²⁴ frames → use longer IVs
- Fluhrer, Mantin and Shamir (FMS) attack (related keys attack):
 - the keys only differ in the 24 bits IV
 - first bytes of key stream known because standard headers are always sent
 - for certain IVs knowing m bytes of key and keystream means you can deduce byte m+1 of key

 \longrightarrow instead of using related IVs, generate IVs using a PRG

Remark

The FMS attack does not apply to RC4-based SSL (TLS), since SSL generates the encryption keys it uses for RC4 by hashing, meaning that different SSL sessions have unrelated keys

<ロ > < 回 > < 回 > < 三 > < 三 > < 三 > 三 の Q (~ 12 / 16)

•
$$\mathcal{K} = \{0,1\}^s$$

4 ロ ト 4 部 ト 4 注 ト 4 注 ト 2 少 3 3 4 12 / 16

- $\blacktriangleright \ \mathcal{K} = \{0,1\}^s$
- Main data structure: register R of s bits

- $\blacktriangleright \ \mathcal{K} = \{0,1\}^s$
- Main data structure: register R of s bits
- Initialisation: R := k

- $\blacktriangleright \ \mathcal{K} = \{0,1\}^s$
- Main data structure: register R of s bits
- Initialisation: R := k
- Keystream generation: 1-bit output per round

taps: $i_1, i_2, \dots i_{\ell}$ feedback bit: $R[i_1] \oplus R[i_2] \oplus \dots \oplus R[i_{\ell}]$ output bit: R[s]

- $\mathcal{K} = \{0,1\}^s$
- ► Main data structure: register *R* of *s* bits
- Initialisation: R := k
- ► Keystream generation: 1-bit output per round

taps: i_1, i_2, \dots, i_ℓ feedback bit: $R[i_1] \oplus R[i_2] \oplus \dots \oplus R[i_\ell]$ output bit: R[s]

- Broken LFSR-based stream ciphers:
 - ► DVD encryption: CSS (2 LFSRs)
 - ► GSM encryption: A5 (3 LFSRs)
 - - 12/16

<ロト < 部 > < き > < き > き う < ご 13/16

•
$$\mathcal{K} = \{0, 1\}^{40}$$

▶
$$\mathcal{K} = \{0, 1\}^{40}$$

▶ Data structures: 17-bits LFSR (R_{17}) and 25-bits LFSR (R_{25})

▶
$$\mathcal{K} = \{0,1\}^{40}$$

▶ Data structures: 17-bits LFSR (R_{17}) and 25-bits LFSR (R_{25})

► Initialisation:
$$R_{17} := 1 || \mathcal{K}[0 - 15]$$

 $R_{25} := 1 || \mathcal{K}[16 - 39]$

▶
$$\mathcal{K} = \{0,1\}^{40}$$

▶ Data structures: 17-bits LFSR (*R*₁₇) and 25-bits LFSR (*R*₂₅)

► Initialisation:
$$R_{17} := 1 || K[0 - 15]$$

 $R_{25} := 1 || K[16 - 39]$

Keystream generation: 1-byte output per round

Can be broken in time 2^{17} . The idea of the attack is as follows:

 Because of structure of MPEG-2, first 20 bytes of plaintext are known

- Because of structure of MPEG-2, first 20 bytes of plaintext are known
- ► Hence also first 20 bytes of keystream are known

- Because of structure of MPEG-2, first 20 bytes of plaintext are known
- ► Hence also first 20 bytes of keystream are known
- Given output of 17 bit LFSR, can deduce output of 25 bit LFSR by subtraction

- Because of structure of MPEG-2, first 20 bytes of plaintext are known
- ► Hence also first 20 bytes of keystream are known
- Given output of 17 bit LFSR, can deduce output of 25 bit LFSR by subtraction
- ► Hence try all 2¹⁷ possibilities for 17 bit LFSR and if generated 25 bit LFSR produces observed keystream, cipher is cracked

Project eStream: project to "identify new stream ciphers suitable for widespread adoption", organised by the EU ECRYPT network \rightarrow HC-128, Rabbit, Salsa20/12, SOSEMANUK,

Grain v1, MICKEY 2.0, Trivium

Project eStream: project to "identify new stream ciphers suitable for widespread adoption", organised by the EU ECRYPT network → HC-128, Rabbit, Salsa20/12, SOSEMANUK, Grain v1, MICKEY 2.0, Trivium

Conjecture

These eStream stream ciphers are "secure"

<ロ > < 回 > < 回 > < 三 > < 三 > < 三 > 三 の Q (~ 16 / 16

▶ Perfect secrecy does not capture all possible attacks.

 \longrightarrow need for different security definition

- ▶ Perfect secrecy does not capture all possible attacks.
 → need for different security definition
- Theorem (Shannon 1949) Let (E, D) be a cipher over (M, C, K). If (E, D) satisfies perfect secrecy, then the keys should be at least as long as the plaintexts (|M| ≤ |K|).
 ⇒ Stream ciphers do not satisfy perfect secrecy because the keys in K are smaller than the messages in M
 → need for different security definition

- ▶ Perfect secrecy does not capture all possible attacks.
 → need for different security definition
- Theorem (Shannon 1949) Let (E, D) be a cipher over (M, C, K). If (E, D) satisfies perfect secrecy, then the keys should be at least as long as the plaintexts (|M| ≤ |K|).
 ⇒ Stream ciphers do not satisfy perfect secrecy because the keys in K are smaller than the messages in M
 → need for different security definition
- The design of crypto primitives is a subtle and error prone task: define threat model, propose construction, prove that breaking construction would solve an underlying hard problem.

 → use standardised publicly know primitives

- ▶ Perfect secrecy does not capture all possible attacks.
 → need for different security definition
- Theorem (Shannon 1949) Let (E, D) be a cipher over (M, C, K). If (E, D) satisfies perfect secrecy, then the keys should be at least as long as the plaintexts (|M| ≤ |K|).
 ⇒ Stream ciphers do not satisfy perfect secrecy because the keys in K are smaller than the messages in M
 → need for different security definition
- The design of crypto primitives is a subtle and error prone task: define threat model, propose construction, prove that breaking construction would solve an underlying hard problem.

 → use standardised publicly know primitives
- Crypto primitives are secure under a precisely defined threat model.
 - \rightarrow respect the security assumptions of the crypto primitives you use