
Access Control
KAMI VANIEA

Today
• Shellshock demo

• Access and information flow

• Access control mechanisms

• Multi-level security

• The BLP security model

Shellshock Demo

Access and information
flow

System security policies and models
• A security policy describes requirements for a system.

• A security model is a framework with which a policy can be
described.

• There are two basic paradigms:

◦ Access control

◦ Information flow control

Access control
A guard controls whether a principal (the subject) is allowed
access to a resource (the object).

Subject
Access
request

Reference
monitor

Object

Authentication Authorization

Information flow control
A guard controls whether a principal (the subject) is allowed
access to a resource (the object).

This is the dual notion, sometimes used when confidentiality is
the primary concern.

Object
Reference
monitor

Subject

Authorization Authentication

The difference
• Access control

◦ Starts with the subject (user) and asks if the user has access to
the object.

• Information flow control

◦ Starts with the object (information) and asks if that information
can be known to the subject.

Access operations: modes and rights
• To define types of access, we define some fundamental access

modes and access rights
• Modes are a way of accessing objects; rights are combinations of

modes
• Access rights are the model’s level of granularity for defining

security policy. Each real operation requires particular access rights
• We will consider access modes and rights of the influential Bell-

LaPadula (BLP) model
◦ BLP enforces confidentiality
◦ Other models enforce integrity, or a combination
◦ Access management almost never considers avalibility

Access operations in BLP
• The access modes of BLP are:

◦ Observe: examine contents
of an object

◦ Alter: change the contents of
an object

• The access rights and their
profiles are:

Observe Alter

Exec

Read X

Append X

Write X X

Profiles and names of rights differ between systems, or even for different subject kinds. E.g., sometimes
have a delete. In Unix, exec for directories indicates ability to read the directory. The profile of rights used to
define security properties in the model.

Who sets the policy?
• Discretionary Access Control (DAC)

◦ The owner of a resource decides who may access that resource.
Policy set on a case-by-case basis.

• Mandatory Access Control (MAC)

◦ The decision of accessing resources is controlled system-wide
by a uniform policy.

In practice a mixture of DAC and MAC may apply.

Ownership and identity
• Owners of resources may be principles in the system: subjects

themselves under access control.

• BLP does not (directly) consider operations to modify access
controls (e.g., chown in Linux), nor explain when such
operations are safe.

• The identity of subjects is also flexible: e.g., identity changes
during operations (SUID programs in Unix).

• Again, this doesn’t fit BLP.

Access control
mechanisms

Access control matrix
How are access control rights defined?
Many schemes but ultimately
modelled by:

• A set S of subjects, a set O of objects

• A set A of operations (modeled by
access rights), we consider
A={exec, read, append, write}

• An access control matrix
𝑀 = 𝑀𝑠𝑜 𝑠𝜖𝑆,𝑜𝜖𝑂

Where each entry 𝑀𝑠𝑜 ⊆ 𝐴 defines
rights for s to access o

• Example matrix for S={Alice,Bob}
and three objects

Bob.doc Edit.exe Fun.com

Alice {} {exec} {exec,
read}

Bob {read,
write}

{exec} {exec,
read,
write}

Representing the access control matrix
• Implementing M directly is impractical, so different schemes are used.

Complimentary possibilities: either use capabilities (store M by rows) or
use access control lists (store M by columns)

• A capability is an unforgeable token that specifies a subject’s access
rights.

◦ Pros: can pass around capabilities
◦ Cons: difficult to revoke or find out who has access to a particular

resources (you have to examine all capabilities)
• An access control list (ACL) stores the access rights to an object with the

object itself.
◦ Pros: good fit with object-biased OSes.
◦ Cons: difficult to revoke, or find out, all permissions for a particular subject

alice VM from
the exercise

• Access control list for each file and folder in
the /var/www folder

• index.php can be read and written to by
alice, anyone on the computer can read it

Three access rights

 r – read

 w – write

 x – exec

Three subjects:

 owner

 group

 world/other

Multi-level security

Multi-level security

◮ Multi Level Security (MLS) systems originated in

the military. A security level is a label for subjects

and objects, to describe a policy.

◮ Security levels are ordered:

unclassified ≤ confidential≤ secret ≤ topsecret.

◮ Ordering can express policies like “no write-down”

which means that a high-level subject cannot write

down to a low-level object. (A user with confidential

clearance cannot write an unclassified file: it might

contain confidential information read earlier.)

◮ In practice, we need more flexibility. We may want

categorizations as well, for example, describing

departments or divisions in an organization. Then

individual levels may not be comparable. . .

Security lattices

◮ A lattice is a set L equipped with a partial ordering

≤ such every two elements a,b ∈ L has a least

upper bound a∨ b and a greatest lower bound

a∧ b. A finite lattice must have top and bottom

elements.

◮ In security, if a ≤ b, we say that b dominates a.
◮ system low is the bottom, dominated by all others.
◮ system high is the top, which dominates all others.

◮ Lattices are useful for MLS policies because:
◮ for two objects at levels a and b, there is a minimal
security level a∨ b for a subject to access both;

◮ for two subjects at levels a and b, there is a
maximal security level a∧ b for an object which
must be readable by both.

A Lattice Construction [Gollmann]

◮ take a set of classifications H and linear ordering ≤H

◮ take a set C of categories; compartments are subsets of C

◮ security levels are pairs (h, c) with h ∈ H and c ⊆ C

◮ ordering (h1, c1) ≤ (h2, c2) ⇐⇒ h1 ≤ h2, c1 ⊆ c2 gives a lattice.

private,{personnel,engineering}

private,{personnel} private,{engineering}

private,{}

public,{personnel,engineering}

public,{personnel} public,{engineering}

public,{}

Running
Example
Classifications (H)

 Admin

 Manager

 User

Categories (C)

 H (Hippo project)

 W (Walrus project)

Admin, {H, W}

Admin, {W} Admin, {H}

Admin, {}

User, {H, W}

User, {W} User, {H}

User, {}

Manager, {H, W}

Manager, {W} Manager, {H}

Manager, {}

Orderings:
(User,{}) ≤ (User, {W})
(User,{}) ≤ (User, {H})

Admin, {H, W}

Admin, {W} Admin, {H}

Admin, {}

User, {H, W}

User, {W} User, {H}

User, {}

Manager, {H, W}

Manager, {W} Manager, {H}

Manager, {}

Orderings:
(User,{}) ≤ (User, {W})
(User,{}) ≤ (User, {H})
(User,{W}) ≤ (User, {H, W})
(User,{H}) ≤ (User, {H, W})

Admin, {H, W}

Admin, {W} Admin, {H}

Admin, {}

User, {H, W}

User, {W} User, {H}

User, {}

Manager, {H, W}

Manager, {W} Manager, {H}

Manager, {}

Orderings:
(User,{}) ≤ (User, {W})
(User,{}) ≤ (User, {H})
(User,{W}) ≤ (User, {H, W})
(User,{H}) ≤ (User, {H, W})
(User,{}) ≤ (Manager,{})
(User,{H,W})≤(Manager,{H,W})

Admin, {H, W}

Admin, {W} Admin, {H}

Admin, {}

User, {H, W}

User, {W} User, {H}

User, {}

Manager, {H, W}

Manager, {W} Manager, {H}

Manager, {}

Orderings:
(User,{}) ≤ (User, {W})
(User,{}) ≤ (User, {H})
(User,{W}) ≤ (User, {H, W})
(User,{H}) ≤ (User, {H, W})
(User,{}) ≤ (Manager,{})
(User,{H,W})≤(Manager,{H,W})
(User,{W}) ≤ (Manager,{W})
(User,{H}) ≤ (Manager,{H})

Admin, {H, W}

Admin, {W} Admin, {H}

Admin, {}

User, {H, W}

User, {W} User, {H}

User, {}

Manager, {H, W}

Manager, {W} Manager, {H}

Manager, {}

Orderings:
(Manager,{}) ≤ (Manager, {W})
(Manager,{}) ≤ (Manager, {H})
(Manager,{W}) ≤ (Manager, {H, W})
(Manager,{H}) ≤ (Manager, {H, W})
(Manager,{}) ≤ (Admin,{})
(Manager,{H,W})≤(Admin,{H,W})
(Manager,{W}) ≤ (Admin,{W})
(Manager,{H}) ≤ (Admin,{H})

Admin, {H, W}

Admin, {W} Admin, {H}

Admin, {}

User, {H, W}

User, {W} User, {H}

User, {}

Manager, {H, W}

Manager, {W} Manager, {H}

Manager, {}

Orderings:
(Admin,{}) ≤ (Admin, {W})
(Admin,{}) ≤ (Admin, {H})
(Admin,{W}) ≤ (Admin, {H, W})
(Admin,{H}) ≤ (Admin, {H, W})

Admin, {H, W}

Admin, {W} Admin, {H}

Admin, {}

User, {H, W}

User, {W} User, {H}

User, {}

Manager, {H, W}

Manager, {W} Manager, {H}

Manager, {}

Outline

Access and information flow

Access control mechanisms

Multi-level security

The BLP security model

Summary

Bell-LaPadula Model (BLP)

◮ BLP (1973) is state machine model for

confidentiality.

◮ Permissions use an AC matrix and security levels.

The security policy prevents information flowing

from a high level to a lower level.

◮ Assume subjects S, objects O, accesses A as before.

◮ A set L of security levels, with a partial ordering ≤.

◮ The state set B×M×F captures the current
permissions and subjects accessing objects. It has
three parts:
◮ B possible current accesses
◮ M permissions matrices
◮ F security level assignments

◮ A BLP state is a triple (b,M, f).

BLP state set

◮ B = P(S×O× A) is the set of all possible current

accesses.

An element b ∈ B is a set of tuples (s, o, a) meaning

s is performing operation a on an object o.

◮ M is the set of permission matrices

M = (Mso)s∈S,o∈O.

◮ F ⊂ LS × LS × LO is the set of security level

assignments.
An element f ∈ F is a triple (fS, fC, fO) where
◮ fS : S→ L gives the maximal security level each
subject can have;

◮ fC : S→ L gives the current security level of each
subject (st fC ≤ fS), and

◮ fO : O→ L gives the classification of all objects.

BLP Model – B
b = [(Alice, FileA, write),

(Alice, FileA, read),

(Alice, FileA, exec),

(Bob, FileA, write),

(Bob, FileA, read),

(Charlie, FileA, read)]

 b is the set of all
possible current
accesses.

 An element of b is a
set of tuples (subject,
action, object)

BLP Model – M

FileA FileB FileC

Alice {read, write,
exec}

{read, write} {exec}

Bob {read, write} {read} {}

Charlie {read, write} {} {}

 M is the set of
permission
matrices

BLP Model – F
𝐿𝑆 = [𝐴𝑙𝑖𝑐𝑒 ⟼ 𝐴𝑑𝑚𝑖𝑛, 𝑊,𝐻 ,

𝐵𝑜𝑏 ⟼ 𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 𝐻 ,

𝐶ℎ𝑎𝑟𝑙𝑖𝑒 ⟼ 𝑈𝑠𝑒𝑟, 𝐻]

𝐿𝐶 = [𝐴𝑙𝑖𝑐𝑒 ⟼ 𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 𝐻 ,

𝐵𝑜𝑏 ⟼ 𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 𝐻 ,

𝐶ℎ𝑎𝑟𝑙𝑖𝑒 ⟼ 𝑈𝑠𝑒𝑟, 𝐻]

𝐿𝑂 = [𝐹𝑖𝑙𝑒𝐴 ⟼ 𝑈𝑠𝑒𝑟, 𝐻 ,

𝐹𝑖𝑙𝑒𝐵 ⟼ 𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 𝐻 ,

FileC ⟼ 𝐴𝑑𝑚𝑖𝑛, 𝐻]

 F is the set security
level assignments

 An element of F is
a triple (𝑓𝑆, 𝑓𝐶, 𝑓𝑂)

 𝑓𝑆 - Maximal
security level

 𝑓𝐶 - Current
security level

 𝑓𝑂 - Classification

BLP Mandatory Access Control Policy

Consider a state (b,M, f), where b is the set of current

accesses.

Simple security property

The ss-property states for each access (s, o, a) ∈ b
where a ∈ {read,write}, then fO(o) ≤ fS(s) (no read-up).

Star property

The ∗-property states for each access (s, o, a) ∈ b
where a ∈ {append,write}, then fC(s) ≤ fO(o) (no
write-down) and moreover, we must have fO(o

′) ≤ fO(o)
for all o′ with (s, o′, a′) ∈ b and a′ ∈ {read,write} (o

must dominate any other object s can read).

Together these form the mandatory access control

policy for BLP.

BLP Discretionary Control and Security

The access control matrix M allows DAC as well.

Discretionary security property

The ds-property: for each access (s, o, a) ∈ b, we have

that a ∈ Mso (discretionary access controls are obeyed).

◮ Definition of Security: The state (b,M, f) is
secure if the three properties above are satisfied.

Notice that BLP’s notion of security is entirely captured

in the current state.

Current clearance level
◮ Unfortunately, the ∗-property means a high-level

subject cannot send messages to a low-level

subject. This is unrealistic!
◮ There are two ways out:

1. temporarily downgrade a high-level subject, which
is why the model includes the current clearance
level setting fC, or

2. identify a set of trusted subjects allowed to
violate the ∗-property.

◮ Approach 1 works because the current state

describes exactly what each subject knows. So if a

subject (e.g. a process) is downgraded, it cannot

access higher-level material, so may safely write at

any lower level than its maximum.

◮ When subjects are people with high-level

clearances, approach 2 works: we trust someone to

violate the property in the model, e.g., by

publishing part of a secret document.

Basic security theorem

◮ A transition from state v1 to v2 is secure simply if

both states v1 and v2 are secure.

◮ This leads to a rather simple and general theorem:

Basic security theorem

If all state transitions in a system are secure and the

initial state of the system is secure, then every

subsequent state is also secure.

(NB: this follows immediately by induction, it has

nothing to do with the properties of BLP!)

◮ The point: we can reduce checking the system for

all possible inputs to checking that each kind of

possible state transition preserves security. Of

course, to do this we need a concrete instance of

the model which describes possible transitions.

Questions

References

See Chapters 5, 11 (also 7 and 8) of Gollmann, and

Parts 2–3 of Bishop.

Ross Anderson. Security Engineering: A Guide to

Building Dependable Distributed Systems..

Wiley & Sons, 2nd Edition, 2008.

Matt Bishop. Computer Security: Art and Science.

Addison-Wesley, 2003.

Dieter Gollmann. Computer Security.

John Wiley & Sons, 3rd Edition, 2011.

Recommended Reading

Chapters 5 and 11 of Gollmann.

Chapters 4 and 8 of Anderson.

