Stream ciphers

Myrto Arapinis

School of Informatics University of Edinburgh

January 19, 2015

1/16

The One-Time Pad (OTP)

- $\blacktriangleright \mathcal{M} = \mathcal{C} = \mathcal{K} = \{0,1\}^n$
- ▶ Encryption: $\forall k \in \mathcal{K}$. $\forall m \in \mathcal{M}$. $E(k, m) = k \oplus m$

$$c = 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0$$

▶ Decryption: $\forall k \in \mathcal{K}. \ \forall c \in \mathcal{C}. \ D(k, c) = k \oplus c$

$$m = 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1$$

► Consistency: $D(k, E(k, m)) = k \oplus (k \oplus m) = m$

2 / 16

Perfect secrecy

Definition

A cipher (E, D) over $(\mathcal{M}, \mathcal{C}, \mathcal{K})$ satisfies perfect secrecy if for all messages $m_1, m_2 \in \mathcal{M}$ of same length $(|m_1| = |m_2|)$, and for all ciphertexts $c \in \mathcal{C}$

$$|Pr(E(k, m_1) = c) - Pr(E(k, m_2) = c)| \le \epsilon$$

where $k \stackrel{r}{\leftarrow} \mathcal{K}$ and ϵ is some "negligible quantity".

OTP satisfies perfect secrecy

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages $m \in \mathcal{M}$ and all ciphertexts $c \in \mathcal{C}$

$$Pr(E(k,m) = c) = \frac{\#\{k \in \mathcal{K}: k \oplus m = c\}}{\#\mathcal{K}}$$
$$= \frac{\#\{k \in \mathcal{K}: k = m \oplus c\}}{\#\mathcal{K}}$$
$$= \frac{1}{\#\mathcal{K}}$$

where $k \stackrel{r}{\leftarrow} \mathcal{K}$.

Thus, for all messages $m_1, m_2 \in \mathcal{M}$, and for all ciphertexts $c \in \mathcal{C}$

$$|Pr(E(k,m_1)=c)-Pr(E(k,m_2)=c)| \leq \left|\frac{1}{\#\mathcal{K}}-\frac{1}{\#\mathcal{K}}\right|=0$$

Limitations of OTP

- ► Key-length!
 - ► The key should be as long as the plaintext.
- ► Getting true randomness!
 - ▶ The key should not be guessable from an attacker.
- ▶ Perfect secrecy does not capture all possible attacks
 - ▶ OTP is subject to two-time pad attacks given $m_1 \oplus k$ and $m_2 \oplus k$, we can compute $m_1 \oplus m_2 = (m_1 \oplus k) \oplus (m_2 \oplus k)$ English has enough redundancy s.t. $m_1 \oplus m_2 \to m_1, m_2$
 - ▶ OTP is malleable given the ciphertext c = E(k, m) with $m = to\ bob: m_0$, it is possible to compute the ciphertext c' = E(k, m') with $m' = to\ eve: m_0$ $c' := c \oplus "to\ bob: 00...00" \oplus "to\ eve: 00...00"$

5/16

Stream ciphers

- ► Goal: make the OTP practical
- ▶ Idea: use a pseudorandom key rather than a really random key
 - ▶ The key will not really be random, but will look random
 - ► The key will be generated from a key seed using a Pseudo-Random Generator (PRG)

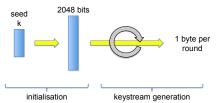
```
G:~\{0,1\}^s \rightarrow \{0,1\}^n \text{ with } s << n
```

- ▶ Encryption using a PRG G: $E(k, m) = G(k) \oplus m$
- ▶ Decryption using a PRG G: $D(k, c) = G(k) \oplus c$
- ► Stream ciphers are subject to two-time pad attacks
- ► Stream ciphers are malleable

6/16

RC4

- ► Stream cipher invented by Ron Rivest in 1987
- ► Consists of 2 phases:



- ► Main data structure: array *S* of 256 bytes.
- ▶ Used in HTTPS and WEP
- ► Weaknesses of RC4:
 - ► first bytes are biased
 - \longrightarrow drop the first to 256 generated bytes
 - ► subject to related keys attacks
 - \longrightarrow choose randomly generated keys as seeds

RC4: initialisation

```
for i := 0 to 255 do S[i] := i end j := 0 for i := 0 to 255 do j := (j + S[i] + K[i \pmod{|K|})) \pmod{256} swap(S[i], S[j]) end i := 0 j := 0
```

RC4: key stream generation

```
while generatingOutput  \begin{split} i &:= i + 1 (\text{mod } 256) \\ j &:= j + S[i] (\text{mod } 256) \\ swap(S[i], S[j]) \\ output(S[S[i] + S[j] (\text{mod } 256)]) \end{split}  end
```

9/16

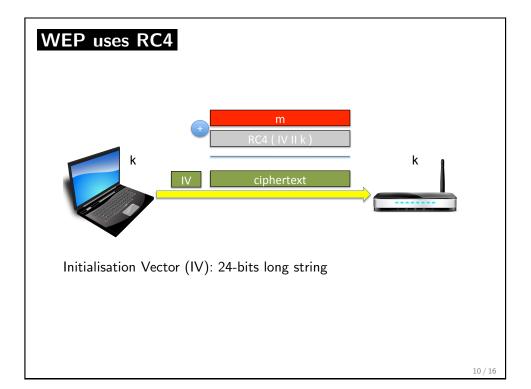
11 / 16

Weaknesses of WEP

- ► two-time pad attack: IV is 24 bits long, so the key is reused after at most 2²⁴ frames
 - \longrightarrow use longer IVs
- ► Fluhrer, Mantin and Shamir (FMS) attack (related keys attack):
 - the keys only differ in the 24 bits IV
 - first bytes of key stream known because standard headers are always sent
 - for certain IVs knowing \emph{m} bytes of key and keystream means you can deduce byte $\emph{m}+1$ of key
 - → instead of using related IVs, generate IVs using a PRG

Remark

The FMS attack does not apply to RC4-based SSL (TLS), since SSL generates the encryption keys it uses for RC4 by hashing, meaning that different SSL sessions have unrelated keys



Linear Feedback Shift Registers (LFSRs)

• $\mathcal{K} = \{0,1\}^s$

► Main data structure: register *R* of *s* bits

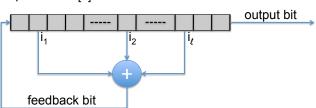
▶ Initialisation: R := k

▶ Keystream generation: 1-bit output per round

taps: $i_1, i_2, \dots i_\ell$

feedback bit: $R[i_1] \oplus R[i_2] \oplus \cdots \oplus R[i_\ell]$

output bit: R[s]

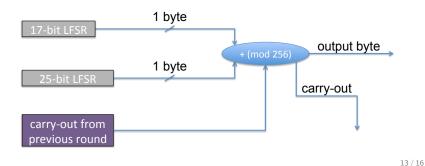


- ► Broken LFSR-based stream ciphers:
 - ► DVD encryption: CSS (2 LFSRs)
 - ► GSM encryption: A5 (3 LFSRs)

► Bluetooth encryption: E0 (4 LFSRs)

Content Scrambling System (CSS) uses LFSRs

- $ightharpoonup \mathcal{K} = \{0,1\}^{40}$
- ▶ Data structures: 17-bits LFSR (R₁₇) and 25-bits LFSR (R₂₅)
- ▶ Initialisation: $R_{17} := 1 || K[0 15]$ $R_{25} := 1 || K[16 - 39]$
- ▶ Keystream generation: 1-byte output per round



Modern stream ciphers

Project eStream: project to "identify new stream ciphers suitable for widespread adoption", organised by the EU ECRYPT network → HC-128, Rabbit, Salsa20/12, SOSEMANUK,

Grain v1, MICKEY 2.0, Trivium

Conjecture

These eStream stream ciphers are "secure"

Weaknesses in CSS

Can be broken in time 2^{17} . The idea of the attack is as follows:

- ► Because of structure of MPEG-2, first 20 bytes of plaintext are known
- ► Hence also first 20 bytes of keystream are known
- ► Given output of 17 bit LFSR, can deduce output of 25 bit LFSR by subtraction
- ► Hence try all 2¹⁷ possibilities for 17 bit LFSR and if generated 25 bit LFSR produces observed keystream, cipher is cracked

14 / 16

Concluding remarks

- ▶ Perfect secrecy does not capture all possible attacks.
 - --- need for different security definition
- ▶ Theorem (Shannon 1949) Let (E, D) be a cipher over $(\mathcal{M}, \mathcal{C}, \mathcal{K})$. If (E, D) satisfies perfect secrecy, then the keys should be at least as long as the plaintexts $(|\mathcal{K}| \leq |\mathcal{M}|)$.
 - \Rightarrow Stream ciphers do not satisfy perfect secrecy because the keys in ${\cal K}$ are smaller than the messages in ${\cal M}$
 - $\longrightarrow \mathsf{need} \mathsf{\ for\ different\ security\ definition}$
- ► The design of crypto primitives is a subtle and error prone task: define threat model, propose construction, prove that breaking construction would solve an underlying hard problem.
 - $\longrightarrow \text{use standardised publicly know primitives}$
- ► Crypto primitives are secure under a precisely defined threat model.
 - \longrightarrow respect the security assumptions of the crypto primitives you use