
Question 1

(a)

On my test system the stack looks like: (used gbp to confirm)

0xbfffefd0: <- esp
...
0xbfffefe8: a+0x00 <- ebp-0x20
0xbfffefec: a+0x04
0xbfffeff0: a+0x08
0xbfffeff4: a+0x0c
0xbfffeff8: a+0x10
0xbfffeffc: i <- ebp-0x0c
0xbffff000:
0xbffff004:
0xbffff008: saved bp <- ebp
0xbffff00c: ret <- ebp+0x4
---------------------------------
0xbffff010: &in <- ebp+0x8
0xbffff014: len <- ebp+0xc

a, i, ret and bp in order (1)

• Allow canary to be inserted at ebp-0x0c and everything to be shifted down
by 4.

• Allow in and len from previous frame to be missed.

(b)

27; however it is likely that this won’t happen and we’ll segfault before that.

addr of
last byte sizeof(uint64_t)
(20 -1) + 8

One point for answer.

(c)

• Because each call to memcpy writes 8 bytes, we can overflow a and write
into i. (1)

1



• If we can set i to something negative we can write to before a and then
write continue to write upwards. (1)

• This may allow us to write to unallocated memory and crash the program,
or worse (1)

• Any value of len > 13 (i.e. 14 and above) will allow us to alter the value of
i as we’ll overflow the array (1)

(accept any two for two marks)

(d)

• A canary is a random value placed onto the stack. (1)
• No program logic should change the canary value. (1)
• Before returning from a function we check the canary. (1)
• If its value has changed we assume someone has been playing around with

the stack and crash. (1)
• Canary will help us detect if we overflow past a, but won’t detect i being

modified as i is after a in memory. (1)

(accept any three for three marks)

(e)

• It would be tricky.

• We cannot overflow past a enough to reach the return address, so a “classic”
stack smashing attack is not possible. (1)

• We could reset i to be zero and trigger an infinite loop. (1)

• If we try and write past i (we can write at most three bytes past) we might
alter some memory and maybe the saved bp (depending on memory layout)
(1)

• A canary would detect this modification and prevent it (1).

Question 2

(a)

• A stored XSS attack relies on a script that is served as part of the web
page, for example a forum post with an embedded script. (1)

2



• A reflected XSS attack relies on a script that is sent with the request and
is copied into the web page dynamically. (1)

• If a user can inject JavaScript they can run programs in another users
browser. (1)

(b)

• http://vulnerable.net/<script>alert("XSS!");</script> (1)
• Need to convince victim to click on link (1)

(c)

• Set up webserver to harvest responses. (1)
• Craft URL to send cookie to server (1)
• For example request an image from webserver that has the cookie as part

of its path. (1)

(d)

(three marks)

Content-Security-Policy: default-src https://vulnerable.net;
frame-src: 'none'
img-src: 'self'
script-src: 'self'
font-src: 'https://themes.googleusercontent.com'

(e)

• No.
• CSP not supported by all browsers.
• Browsers can ignore policy.
• Doesn’t fix underlying problem that JS is being injected. Better fix would

be to sanitize the input before displaying.

(accept any two for two marks)

3


	Question 1
	(a)
	(b)
	(c)
	(d)
	(e)

	Question 2
	(a)
	(b)
	(c)
	(d)
	(e)


