
Computer Security

Coursework Exercise CW1

Cryptography and Protocols

School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/cs

This is an individual assessed coursework exercise. It will be awarded a mark out of 25. It is
one of two assessed exercises in the Computer Security course. Each exercise is worth 12.5%
of the final result for the course. The deadline for completing this coursework is 16:00, 16th
March 2015. The final page summarises submission instructions. This exercise explores
some topics in cryptography and protocols. This answers should be submitted on paper, by
hand at the ITO. To answer the questions you will need to consult the lecture slides and
additional resources such as the referenced papers that are cited in the lecture slides.

Question 1 The following questions are intended to help you further understand some of the
concepts learned in the lectures regarding the use of pseudo-random number generators, and
key entropy.

(a) A bit source S produces a statistically biased random sequence of bits b1b2b3 . . . and it
is known that for each bit bi, prob(bi = 0) = p and prob(bi = 1) = (1 − p), for some
0 < p < 1 where p 6= 1/2. Devise a simple algorithm to extract from S an unbiased random
bit sequence a1a2a3 . . . (i.e., produce a bit sequence such that prob(ai = 0) = prob(ai =
1) = 1/2). Justify that your algorithm works as required.

ANSWER: Consider the following algorithm:

i := 1
while(true){

if bi 6= bi+1

output bi

i := i + 2
}

At each iteration of the while loop, the algorithm outputs:

• 0 with probability p(1− p) – prob(bi = 0 ∧ bi+1 = 1) = p(1− p)
• 1 with probability (1− p)p – prob(bi = 1 ∧ bi+1 = 0) = (1− p)p
• nothing with probability p2 + (1− p)2 – prob(bi = bi+1) = p2 + (1− p)2

1



So, in the resulting sequence we have for all j ∈ N prob(aj = 0) = prob(aj = 1) =
p(p− 1).

(b) A colleague is preparing a presentation in which he wants to demonstrate the superiority
of the public key cryptosystem RSA over the conventional cryptosystem AES. One of his
arguments is that because RSA uses a key size of 2048 bits, while AES uses a key size of
128 bits, RSA offers a more secure alternative (because 2048 is a much larger number than
128). Do you agree with this argument? Why or why not?

ANSWER: The best known attack for breaking AES-128 is brute-forcing the
key space. That is the complexity of the attack in in O(2128). However, there are
better attacks than brute-force against RSA. Indeed, the security of the RSA
algorithm relies on the difficulty of large numbers factorization. The current
best known algorithms for factoring large numbers is the Number Field Sieve
that takes sub exponential time. Thus, RSA keys must be longer for equivalent
resistance to attacks, than AES keys. RSA Security claims that 1024-bit RSA
keys are equivalent in strength to 80-bit symmetric keys, 2048-bit RSA keys to
112-bit symmetric keys and 3072-bit RSA keys to 128-bit symmetric keys.

(c) A vendor is attempting to sell cryptographic software to your company and suggests that
their software uses a key length of 160 bits, and hence requires O(2160) operations to attack
the cipher. The vendor explains that these 160 bits are derived as follows: the software
repeatedly selects 20 random characters from the set {a, . . . , z} and that since 8 bits are
used to encode each character, the key length is 8× 20 = 160 bits long. Do you believe his
claim that this cipher offers 160 bits of security through its key? Why or why not?

ANSWER: The size of the key space is actually 2620. So a brute-force attack
takes O(2620) ∼ O(294) << O(2160)

Question 2 Attack on variants of raw RSA.

(a) Assume that Alice wants to keep her RSA modulus N secret to everybody except to Bob.
Alice uses e = 3 as public exponent. To encrypt a message m, Bob computes c = m3 mod N
and sends c to Alice. Assume that Eve gets c1 = m3

1 mod N and c2 = m3
2 mod N and

already knows m1 and m2; explain how Eve can recover N .

ANSWER: c1 = m3
1 (mod N) and c2 = m3

2 (mod N). But by definition this means
that N |m3

1 − c1 and N |m3
2 − c2. So N is a common divisor of m3

1 − c1 and m3
2 − c2.

So N is a multiple of gcd(m3
1 − c1,m3

2 − c2). Furthermore, because e = 3 is small
it must be that N is a ”small” multiple of gcd(m3

1 − c1,m3
2 − c2). So with high

probability N is one of the first few multiples of gcd(m3
1− c1,m3

2− c2). Could try
and check the first few multiples. In fact there are even possibilistic attacks if
m1 and m2 are related by a known relation.

For more on how to use RSA see

[1] Dan Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of
the American Mathematical Society (AMS), 46(2):203213, 1999.

(b) Assume that Alice and Bob want to share the same modulus N but use different public
exponent. Alice uses eA = 3 and Bob uses eB = 5. Let dA and dB be the corresponding
private exponents. Explain how Alice can recover dB from dA.

ANSWER: If you assumed that Alice knows φ(N) for computing dA, she can
compute dB using the Extended Eucledian algorithm. However Alice doesn’t

2



need to be given φ(N), she can efficientlty recover it from N , eA and dA. See [1]
above for more details.

(c) Assume that Alice and Bob want to share the same modulus N but use different public
exponent. Alice uses eA = 3 and Bob uses eB = 5. Now Charlie wants to encrypt a message
m for Alice and Bob. He sends:

cA = m3 mod N

to Alice and
cB = m5 mod N

to Bob. Explain how Eve can recover m from N , cA and cB.

ANSWER: Note that a and b are coprime, so we can compute a and b such
that 3a + 5b = gcd(3, 5) = 1. a and b can be computed using the extended Eu-
cledian algorithm. a = 2 and b = −1 are possible solutions. Then we need to
compute c2A (mod N) and c−1B (mod N). By assumption on the message space,
gcd(cB, N) = 1, and thus c−1B (mod N) can be computed using the extended Eucle-
dian algorithm. Finally compute c2A (mod N) ∗ c−1B (mod N) = cA ∗ c−1B (mod N) =
m3∗2 ∗m−5 (mod N) = m (mod N) = m.

Question 3 Alice and Bob believe they share an k-bit secret key, and want to confirm that
they do agree on the the same key. In order to achieve this over an insecure channel, while
preventing an attacker from learning the secret key, they execute the following protocol. Let
kA be the key held by Alice, and kB the key held by Bob.

1. Alice generates a random k-bit value r.

2. Alice computes x = kA ⊕ r, and sends x to Bob.

3. Bob computes y = kB ⊕ x and sends y to Alice.

4. Alice compares r and y. Ifr = y, then she knows kA = kB that is, she and Bob do agree
on the same secret key.

(a) Show how an attacker can learn the shared secret key.

ANSWER: The attacker randomly selects r′ and sends it to Bob, who will think
it comes from Alice. Bob will send back r′ ⊕ kB. Now the attacker can just xor
his randomly selected value r′ with the message sent by Bob and retrieve kB.
Indeed, kB = (r′ ⊕ kB)⊕ r′.
Another possible solution is for the attacker to just intercept x and y, and then
retrieve kB = x⊕ y.

(b) Show how an attacker can make Alice and Bob believe they do not share the same key.

ANSWER: The attacker needs to trick Alice into believing that she doesn’t
share the same key with Bob. For that the attacker intercepts Bob’s response
y, and sends any other message r′ 6= y to Alice. Note that if Alice and Bob do
share the same key, Bob will be sending r (the one selected by Alice in the first
step of the protocol). Alice will then compare the value she received (r′) and
the one she selected in the first step (r). As these are different she will think
that Bob and herself do not share the same key.

3



Question 4 In class, we saw the Diffie-Hellman protocol, which is a two-party key establish-
ment protocol secure against passive attackers. However, as we saw, the Diffie-Hellman protocol
is insecure against active attackers. Indeed, a malicious agent can mount a man-in-the-middle
attack to learn a key not intended for him. This attack is possible because their is no mech-
anism to authenticate the two parties to one another. We consider the following extension of
the Diffie-Hellman protocol to thwart this attack. We assume that the parties A and B have a
private signing key skA and skB respectively, and a certificate on the corresponding public key
CERTA and CERTB respectively.

A B
gx−−−−−−−−−−−−−−−−−−−−−−−→

gy , B, CERTB , sig(skB ,(gx,gy))←−−−−−−−−−−−−−−−−−−−−−−−
A, CERTA, sig(skA,(gx,gy))−−−−−−−−−−−−−−−−−−−−−−−→

The result is a shared secret KAB = gxy from which the parties derive a session-key.

(a) Briefly explain the purpose of the signatures in the protocol above. How does it defend
against the attack discussed in class?

ANSWER: The original Diffie-Hellman has no authentication mechanism to
ensure the two parties that they are indeed talking to each other. In class, we
saw that the DH protocol is subject to the following man in the middle attack

A E A

a
r←− (Zp)∗ a′

r←− (Zp)∗ b
r←− (Zp)∗

b′
r←− (Zp)∗

B, gb (mod p)←−−−−−−−−−
B, gb′ (mod p)←−−−−−−−−−
A, ga (mod p)−−−−−−−−−→

A, ga′
(mod p)−−−−−−−−−−→

kAB = (gb
′
)a = gb

′a kA = (ga)b
′

= gab
′

= kAB kBA = (ga
′
)b = ga

′b

kB = (gb)a
′

= gba
′

= kBA

where Eve has caused

• A to think that she is communicating securely with B and that they have
both agreed to the key kAB;

• B to think that she is communicating securely with A and that they have
both agreed to the key kBA;

• Eve has learned the keys kAB and kBA which were intended to remain secret
from her.

In the variant proposed in the statement of Problem 2, A and B sign their view
on kAB and kBA. Now, because Eve cannot forge A or B’s signature she cannot
mount the attack on the original DH protocol on this variant of the protocol. In
particular, she cannot sign with the secret signing key of A the message (ga

′
, gb).

In other words she cannot build message sign(skA, (g
a′ , gb)). Similarly, she cannot

sign with the secret signing key of B the message (ga, gb
′
). In other words she

cannot build message sign(skA, (g
a, gb

′
)).

4



(b) Show that an active man-in-the-middle, Eve, can cause:

• A to think that she is communicating securely with B (as required),

• but B to think he is communicating securely with Eve.

In other words, B is fooled into thinking that the subsequent encrypted messages he is
receiving (from A) are coming from Eve. Note that Eve cannot eavesdrop on the resulting
encrypted channel.
Hint: Eve replaces the third message. You may assume that Eve also has a certificate,
CERTE , on her public signature verification key skE .

ANSWER: If Eve intercepts the third message in an honest execution of the
protocol, and replaces it with the following message:

E, CERTE , sig(skE , (g
x, gy))

which she can because she can obtain gx and gy from the first to messages of
the session, then

• A will think that she is communicating securely with B (as required),

• but B will think he is communicating securely with Eve.

This is possible because in the first two messages gx and gy are not linked to A
and B in a secure way.

(c) Describe how Eve can use this attack to steal money from A. For example, suppose A gives
expert advice in a private chat room run by B, and that she gets paid for that.

ANSWER: Eve could also register as an expert on Bob’s private chat to sell
her advice. Then she could just relay to A the messages sent from B to her.
A will accept these messages as coming from B for her and will reply with her
advice. Now Eve, will intercept A’s responses and relay them to B as if coming
from herself and will get paid for the advice in place of A.

(d) Propose a way to fix the protocol to defend against this attack. Explain why your fix
prevents the attack from Question 4(b).

ANSWER: To fix this problem, A and B need to link gx and gy to the two
parties of this protocol. This could be achieved as follows

A B
gx−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

gy , B, CERTB , sig(skB ,(gx,gy)), aenc(gx·gy ,(A,B,gx,gy))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A, CERTA, sig(skA,(gx,gy)), aenc(gx·gy ,(A,B,gx,gy))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

5


