

The One-Time Pad (OTP)

Perfect secrecy

Definition

A cipher (E, D) over $(\mathcal{M}, \mathcal{C}, \mathcal{K})$ satisfies perfect secrecy if for all messages $m_1, m_2 \in \mathcal{M}$ of same length $(|m_1| = |m_2|)$, and for all ciphertexts $c \in C$

 $|Pr(E(k,m_1)=c) - Pr(E(k,m_2)=c)| \le \epsilon$

where $k \xleftarrow{r} \mathcal{K}$ and ϵ is some "negligible quantity".

OTP satisfies perfect secrecy

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

<u>Proof:</u> We first note that for all messages $m \in \mathcal{M}$ and all ciphertexts $c \in \mathcal{C}$

$$Pr(E(k,m) = c) = \frac{\#\{k \in \mathcal{K}: k \oplus m = c\}}{\#\mathcal{K}}$$
$$= \frac{\#\{k \in \mathcal{K}: k = m \oplus c\}}{\#\mathcal{K}}$$
$$= \frac{1}{\#\mathcal{K}}$$

where $k \xleftarrow{r} \mathcal{K}$. Thus, for all messages $m_1, m_2 \in \mathcal{M}$, and for all ciphertexts $c \in \mathcal{C}$

$$|Pr(E(k,m_1)=c)-Pr(E(k,m_2)=c)| \leq \left|\frac{1}{\#\mathcal{K}}-\frac{1}{\#\mathcal{K}}\right|=0$$

2/16

Limitations of OTP

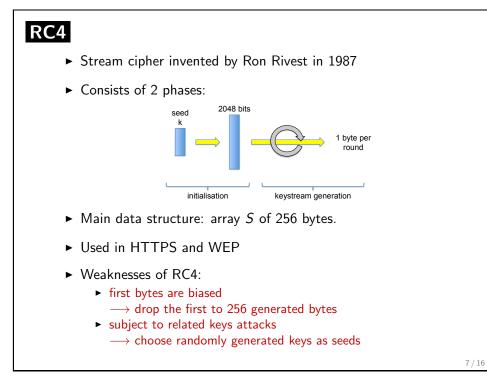
- ► Key-length!
 - The key should be as long as the plaintext.
- Getting true randomness!
 - The key should not be guessable from an attacker.
- ► Perfect secrecy does not capture all possible attacks
 - OTP is subject to two-time pad attacks given m₁ ⊕ k and m₂ ⊕ k, we can compute m₁ ⊕ m₂ = (m₁ ⊕ k) ⊕ (m₂ ⊕ k) English has enough redundancy s.t. m₁ ⊕ m₂ → m₁, m₂
 - OTP is malleable given the ciphertext c = E(k, m) with m = to bob : m₀, it is possible to compute the ciphertext c' = E(k, m') with m' = to eve : m₀ c' := c ⊕ "to bob : 00...00" ⊕ "to eve : 00...00"

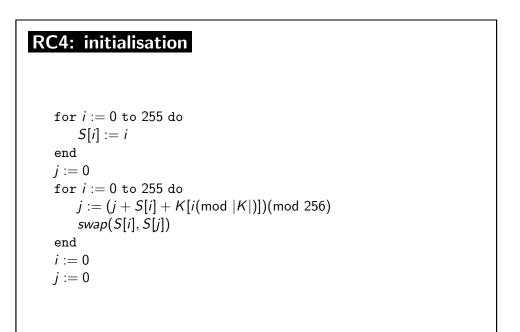
5/16

Stream ciphers

- ► Goal: make the OTP practical
- ► Idea: use a pseudorandom key rather than a really random key
 - \blacktriangleright The key will not really be random, but will look random
 - The key will be generated from a key seed using a Pseudo-Random Generator (PRG)
 G: {0,1}^s → {0,1}ⁿ with s << n
- Encryption using a PRG G: $E(k,m) = G(k) \oplus m$
- Decryption using a PRG G: $D(k, c) = G(k) \oplus c$
- Stream ciphers are subject to two-time pad attacks
- Stream ciphers are malleable

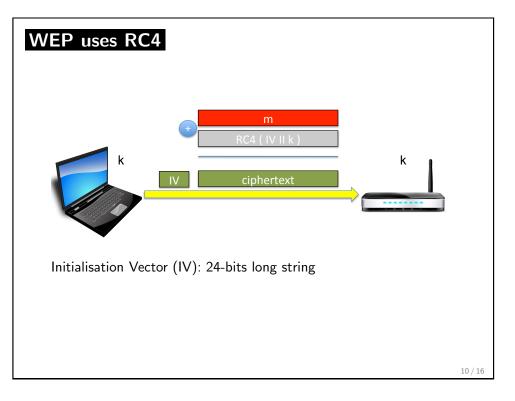
8/16





RC4: key stream generation

while generatingOutput $i := i + 1 \pmod{256}$ $j := j + S[i] \pmod{256}$ swap(S[i], S[j]) $output(S[S[i] + S[j] \pmod{256}])$ end



Weaknesses of WEP

 two-time pad attack: IV is 24 bits long, so the key is reused after at most 2²⁴ frames

 $\longrightarrow use \ \text{longer} \ \text{IVs}$

- Fluhrer, Mantin and Shamir (FMS) attack (related keys attack):
 - the keys only differ in the 24 bits IV
 - first bytes of key stream known because standard headers are always sent
 - for certain IVs knowing m bytes of key and keystream means you can deduce byte m + 1 of key
 - \longrightarrow instead of using related IVs, generate IVs using a PRG

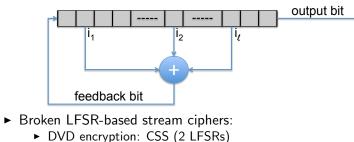
Remark

The FMS attack does not apply to RC4-based SSL (TLS), since SSL generates the encryption keys it uses for RC4 by hashing, meaning that different SSL sessions have unrelated keys

Linear Feedback Shift Registers (LFSRs) $\succ \mathcal{K} = \{0,1\}^s$

- $\mathcal{K} = \{0, 1\}^n$
- Main data structure: register R of s bits
- Initialisation: R := k
- ► Keystream generation: 1-bit output per round

taps: $i_1, i_2, \ldots i_{\ell}$ feedback bit: $R[i_1] \oplus R[i_2] \oplus \cdots \oplus R[i_{\ell}]$ output bit: R[s]

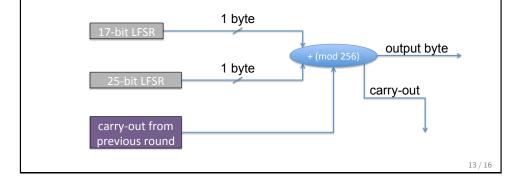


- GSM encryption: CSS (2 LFSRs)
- Gow encryption: A5 (3 LFSKs)
 Blueteeth eneryptics: 50 (4 LFSKs)
- Bluetooth encryption: E0 (4 LFSRs)

9/16

Content Scrambling System (CSS) uses LFSRs

- ▶ $\mathcal{K} = \{0, 1\}^{40}$
- ▶ Data structures: 17-bits LFSR (R_{17}) and 25-bits LFSR (R_{25})
- ► Initialisation: $R_{17} := 1 || K[0 15]$ $R_{25} := 1 || K[16 - 39]$
- ► Keystream generation: 1-byte output per round



Modern stream ciphers

Project eStream: project to "identify new stream ciphers suitable for widespread adoption", organised by the EU ECRYPT network \rightarrow HC-128, Rabbit, Salsa20/12, SOSEMANUK,

Grain v1, MICKEY 2.0, Trivium

Conjecture

These eStream stream ciphers are "secure"

Weaknesses in CSS

Can be broken in time 2^{17} . The idea of the attack is as follows:

- Because of structure of MPEG-2, first 20 bytes of plaintext are known
- ► Hence also first 20 bytes of keystream are known
- Given output of 17 bit LFSR, can deduce output of 25 bit LFSR by subtraction
- Hence try all 2¹⁷ possibilities for 17 bit LFSR and if generated 25 bit LFSR produces observed keystream, cipher is cracked

14 / 16

Concluding remarks

- Perfect secrecy does not capture all possible attacks.

 —> need for different security definition
- Theorem (Shannon 1949) Let (E, D) be a cipher over (M, C, K). If (E, D) satisfies perfect secrecy, then the keys should be at least as long as the plaintexts (|K| ≤ |M|).
 ⇒ Stream ciphers do not satisfy perfect secrecy because the keys in K are smaller than the messages in M
 → need for different security definition
- The design of crypto primitives is a subtle and error prone task: define threat model, propose construction, prove that breaking construction would solve an underlying hard problem.

 → use standardised publicly know primitives
- Crypto primitives are secure under a precisely defined threat model.
 - \longrightarrow respect the security assumptions of the crypto primitives you use