Cryptographic protocols

Myrto Arapinis School of Informatics University of Edinburgh

February 10, 2014

Context

Applications exchanging sensitive data over a public network:

- ► eBanking,
- eCommerce,
- eVoting,
- ► ePassports,
- Mobile phones,
- ▶ ...

Context

Applications exchanging sensitive data over a public network:

- ▶ eBanking,
- eCommerce,
- eVoting,
- ► ePassports,
- Mobile phones,
- ► ...

A malicious agent can:

- record, alter, delete, insert, redirect, reorder, and reuse past or current messages, and inject new messages
 - \longrightarrow the network is the attacker
- control dishonest participants

More complex systems needed...

More complex systems needed...

 $e = E(K_E, \text{Transfer 100} \in \text{on Amazon's account})$

 $m = MAC(K_M, E(K_E, \text{Transfer 100} \in \text{ on Amazon's account}))^{\prime}$

< □ > < □ > < □ > < Ξ > < Ξ > Ξ のQ (* 3/20

More complex systems needed...

 $e=E(K_E, \text{Transfer 100} \notin \text{on Amazon's account})$ $m=MAC(K_M, E(K_E, \text{Transfer 100} \notin \text{on Amazon's account}))$

Replay attack

... to achieve more complex properties

- Confidentiality: Some information should never be revealed to unauthorised entities.
- Integrity: Data should not be altered in an unauthorised manner since the time it was created, transmitted or stored by an authorised source.
- Authentication: Ability to know with certainty the identity of an communicating entity.
- ► Anonymity: The identity of the author of an action (*e.g.* sending a message) should not be revealed.
- Unlinkability: An attacker should not be able to deduce whether different services are delivered to the same user
- Non-repudiation: The author of an action should not be able to deny having triggered this action.

Cryptographic protocols

Cryptographic protocols Programs relying on cryptographic primitives and whose goal is the establishment of "secure" communications.

Cryptographic protocols

Cryptographic protocols

Programs relying on cryptographic primitives and whose goal is the establishment of "secure" communications.

But!

Many exploitable errors are due not to design errors in the primitives, but to the way they are used, *i.e.* bad protocol design and buggy or not careful enough implementation

Numerous deployed protocols are flawed!!!

Needham-Schroeder protocol - G. Lowe, "An attack on the Needham-Schroeder public-key authentication protocol"

Kerberos protocol - I. Cervesato, A. D. Jaggard, A. Scedrov, J. Tsay, and C. Walstad, "Breaking and fixing public-key kerberos"

Single-Sign-On protocol - A. Armando, R. Carbone, L. Compagna, J. Cuellar, and M. L. Tobarra, "Formal analysis of SAML 2.0 web browser single sign-on: breaking the SAML-based single sign-on for google apps"

PKCS#11 API - M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel, "Attacking and fixing PKCS#11 security tokens"

BAC protocol - T. Chothia, and V. Smirnov, "A traceability attack against e-passports"

. . .

AKA protocol - M. Arapinis, L. Mancini, E. Ritter, and M. Ryan, "New privacy issues in mobile telephony: fix and verification"

Many of these attacks do not even break the crypto primitives!!

Assume a commutative symmetric encryption scheme

 $\{\{m\}_{k_1}\}_{k_2} = \{\{m\}_{k_2}\}_{k_1}$

Assume a commutative symmetric encryption scheme

 $\{\{m\}_{k_1}\}_{k_2} = \{\{m\}_{k_2}\}_{k_1}$

Assume a commutative symmetric encryption scheme

 $\{\{m\}_{k_1}\}_{k_2} = \{\{m\}_{k_2}\}_{k_1}$

Assume a commutative symmetric encryption scheme

 $\{\{m\}_{k_1}\}_{k_2} = \{\{m\}_{k_2}\}_{k_1}$

Assume a commutative symmetric encryption scheme

 $\{\{m\}_{k_1}\}_{k_2} = \{\{m\}_{k_2}\}_{k_1}$

where $\{m\}_k$ denotes the encryption of message *m* under the key *k* Example: RSA

since $\{\{\text{pin: } 3443\}_{\mathsf{pk}_A}\}_{\mathsf{pk}_B} = \{\{\text{pin: } 3443\}_{\mathsf{pk}_B}\}_{\mathsf{pk}_A} \text{ by commutativity } \}$

Assume a commutative symmetric encryption scheme

 $\{\{m\}_{k_1}\}_{k_2} = \{\{m\}_{k_2}\}_{k_1}$

where $\{m\}_k$ denotes the encryption of message m under the key k Example: RSA

since $\{\{\text{pin: } 3443\}_{\mathsf{pk}_A}\}_{\mathsf{pk}_B} = \{\{\text{pin: } 3443\}_{\mathsf{pk}_B}\}_{\mathsf{pk}_A} \text{ by commutativity } \}$

・ 「・ < 目 > < 目 > < 目 > < 目 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assume a commutative symmetric encryption scheme

 $\{\{m\}_{k_1}\}_{k_2} = \{\{m\}_{k_2}\}_{k_1}$

where $\{m\}_k$ denotes the encryption of message m under the key k Example: RSA

since $\{\{\text{pin: } 3443\}_{\mathsf{pk}_A}\}_{\mathsf{pk}_B} = \{\{\text{pin: } 3443\}_{\mathsf{pk}_B}\}_{\mathsf{pk}_A} \text{ by commutativity } \}$

< 日 > < 日 > < 三 > < 三 > < 三 > < 三 > < 三 > < 오

Assume a commutative symmetric encryption scheme

 $\{\{m\}_{k_1}\}_{k_2} = \{\{m\}_{k_2}\}_{k_1}$

where $\{m\}_k$ denotes the encryption of message m under the key k Example: RSA

since $\{\{\text{pin: } 3443\}_{\mathsf{pk}_A}\}_{\mathsf{pk}_B} = \{\{\text{pin: } 3443\}_{\mathsf{pk}_B}\}_{\mathsf{pk}_A} \text{ by commutativity } \}$

<ロト < 団 > < 巨 > < 巨 > < 巨 > 三 の Q () 8 / 20

Assume a commutative symmetric encryption scheme

 $\{\{m\}_{k_1}\}_{k_2} = \{\{m\}_{k_2}\}_{k_1}$

where $\{m\}_k$ denotes the encryption of message m under the key k Example: RSA

since $\{\{\text{pin: } 3443\}_{\mathsf{pk}_A}\}_{\mathsf{pk}_B} = \{\{\text{pin: } 3443\}_{\mathsf{pk}_B}\}_{\mathsf{pk}_A} \text{ by commutativity } \}$

ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < ○ ○ ○
 8 / 20

Assume a commutative symmetric encryption scheme

 $\{\{m\}_{k_1}\}_{k_2} = \{\{m\}_{k_2}\}_{k_1}$

where $\{m\}_k$ denotes the encryption of message m under the key k Example: RSA

since $\{\{\text{pin: } 3443\}_{\mathsf{pk}_A}\}_{\mathsf{pk}_B} = \{\{\text{pin: } 3443\}_{\mathsf{pk}_B}\}_{\mathsf{pk}_A} \text{ by commutativity } \}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

NSPK: authentication and key agreement protocol

B Α

[N. Roger, M. Schroeder, Michael. "Using encryption for authentication in large networks of computers". Communications of the ACM (December 1978)]

- ・ロト ・ 日 ・ ・ 目 ・ ・ 日 ・ うへの
 - 9 / 20

NSPK: authentication and key agreement protocol

[N. Roger, M. Schroeder, Michael. "Using encryption for authentication in large networks of computers". Communications of the ACM (December 1978)]

・ロット 小田 マ 小田 マ トロッ

NSPK: authentication and key agreement protocol

[N. Roger, M. Schroeder, Michael. "Using encryption for authentication in large networks of computers". Communications of the ACM (December 1978)]

・ロト ・ 日 ・ ・ 目 ・ ・ 日 ・ うへの

NSPK: authentication and key agreement protocol

[N. Roger, M. Schroeder, Michael. "Using encryption for authentication in large networks of computers". Communications of the ACM (December 1978)]

NSPK: authentication and key agreement protocol

[N. Roger, M. Schroeder, Michael. "Using encryption for authentication in large networks of computers". Communications of the ACM (December 1978)]

・ロト・白下・ 小田 ト ・田 ・ うくの

NSPK: authentication and key agreement protocol

[N. Roger, M. Schroeder, Michael. "Using encryption for authentication in large networks of computers". Communications of the ACM (December 1978)]

NSPK: authentication and key agreement protocol

 $k_{AB} \leftarrow h(N_A, N_B)$ $k_{AB} \leftarrow h(N_A, N_B)$

[N. Roger, M. Schroeder, Michael. "Using encryption for authentication in large networks of computers". Communications of the ACM (December 1978)]

NSPK: security requirements

- Authentication: if Alice has completed the protocol, apparently with Bob, then Bob must also have completed the protocol with Alice.
- Authentication: If Bob has completed the protocol, apparently with Alice, then Alice must have completed the protocol withBob.
- Confidentiality: Messages sent encrypted with the agreed key $(k \leftarrow h(N_A, NB))$ remain secret.

Attack found 17 years after the publication of the NS protocol!!

Attack found 17 years after the publication of the NS protocol!!

[G. Lowe. "An attack on the Needham-Schroeder public key authentication protocol". Information Processing Letters (November 1995)]

Attack found 17 years after the publication of the NS protocol!!

[G. Lowe. "An attack on the Needham-Schroeder public key authentication protocol". Information Processing Letters (November 1995)] \rightarrow (\Rightarrow) (

Attack found 17 years after the publication of the NS protocol!! В Α new N₄ $\operatorname{aenc}(\operatorname{pk}_{I}, \langle N_{A}, A \rangle)$ $\operatorname{aenc}(\operatorname{pk}_B, \langle N_A, A \rangle)$

[G. Lowe. "An attack on the Needham-Schroeder public key authentication protocol". Information Processing Letters (November 1995)]

[G. Lowe. "An attack on the Needham-Schroeder public key authentication protocol". Information Processing Letters (November 1995)]

Attack found 17 years after the publication of the NS protocol!!

[G. Lowe. "An attack on the Needham-Schroeder public key authentication protocol". Information Processing Letters (November 1995)]

[G. Lowe. "An attack on the Needham-Schroeder public key authentication protocol". Information Processing Letters (November 1995)]

[G. Lowe. "An attack on the Needham-Schroeder public key authentication protocol". Information Processing Letters (November 1995)]

[G. Lowe. "An attack on the Needham-Schroeder public key authentication protocol". Information Processing Letters (November 1995)]

[G. Lowe. "An attack on the Needham-Schroeder public key authentication protocol". Information Processing Letters (November 1995)] $\mathbb{P} \to \mathbb{P} = \mathbb{P} = \mathbb{P}$

NSPK: Lowe's fix

 $k_{AB} \leftarrow h(N_A, N_B)$ $k_{AB} \leftarrow h(N_A, N_B)$

- $\{m\}_k^s$: message *m* symmetrically encrypted under key *k*
- $\{m\}_k^a$: message *m* asymmetrically encrypted under key *k*
- $[m]_k$: message *m* digitally signed with key *k*
- ► t_C, t_K: timestamps
- $TGT = \{AK, C, t_K\}_{k_T}^s$

- $\{m\}_k^s$: message *m* symmetrically encrypted under key *k*
- $\{m\}_k^a$: message *m* asymmetrically encrypted under key *k*
- $[m]_k$: message *m* digitally signed with key *k*
- ► t_C, t_K: timestamps
- $TGT = \{AK, C, t_K\}_{k_T}^s$

- $\{m\}_k^s$: message *m* symmetrically encrypted under key *k*
- $\{m\}_k^a$: message *m* asymmetrically encrypted under key *k*
- $[m]_k$: message *m* digitally signed with key *k*
- ► t_C, t_K: timestamps
- $TGT = \{AK, C, t_K\}_{k_T}^s$

- $\{m\}_k^s$: message *m* symmetrically encrypted under key *k*
- $\{m\}_k^a$: message *m* asymmetrically encrypted under key *k*
- $[m]_k$: message *m* digitally signed with key *k*
- ► t_C, t_K: timestamps
- $TGT = \{AK, C, t_K\}_{k_T}^s$

- $\{m\}_k^s$: message *m* symmetrically encrypted under key *k*
- $\{m\}_k^a$: message *m* asymmetrically encrypted under key *k*
- $[m]_k$: message *m* digitally signed with key *k*
- t_C, t_K : timestamps
- $TGT = \{AK, C, t_K\}_{k_T}^s$

- $\{m\}_k^s$: message *m* symmetrically encrypted under key *k*
- $\{m\}_k^a$: message *m* asymmetrically encrypted under key *k*
- $[m]_k$: message *m* digitally signed with key *k*
- t_C, t_K : timestamps
- $TGT = \{AK, C, t_K\}_{k_T}^s$

Fixing Public-Key Kerberos". (ASIAN'06)]

Fixing Public-Key Kerberos". (ASIAN'06)]

[I. Cervesato, A. D. Jaggard, A. Scedrov, J. Tsay, C. Walstad. "Breaking and Fixing Public-Key Kerberos". (ASIAN'06)]

[I. Cervesato, A. D. Jaggard, A. Scedrov, J. Tsay, C. Walstad. "Breaking and Fixing Public-Key Kerberos". (ASIAN'06)]

[I. Cervesato, A. D. Jaggard, A. Scedrov, J. Tsay, C. Walstad. "Breaking and Fixing Public-Key Kerberos". (ASIAN'06)]

4 ロ ト 4 回 ト 4 三 ト 4 三 ト 三 9 9 0
14 / 20

[I. Cervesato, A. D. Jaggard, A. Scedrov, J. Tsay, C. Walstad. "Breaking and Fixing Public-Key Kerberos". (ASIAN'06)]

[I. Cervesato, A. D. Jaggard, A. Scedrov, J. Tsay, C. Walstad. "Breaking and Fixing Public-Key Kerberos". (ASIAN'06)]